亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn_main.c

?? Support Vector Machine Struct
?? C
?? 第 1 頁 / 共 2 頁
字號:
    learn_parm->type=CLASSIFICATION;
  }
  else if(strcmp(type,"r")==0) {
    learn_parm->type=REGRESSION;
  }
  else if(strcmp(type,"p")==0) {
    learn_parm->type=RANKING;
  }
  else if(strcmp(type,"o")==0) {
    learn_parm->type=OPTIMIZATION;
  }
  else if(strcmp(type,"s")==0) {
    learn_parm->type=OPTIMIZATION;
    learn_parm->sharedslack=1;
  }
  else {
    printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->skip_final_opt_check) 
     && (kernel_parm->kernel_type == LINEAR)) {
    printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
    learn_parm->skip_final_opt_check=0;
  }    
  if((learn_parm->skip_final_opt_check) 
     && (learn_parm->remove_inconsistent)) {
    printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->svm_maxqpsize<2)) {
    printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
    printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); 
    printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_iter_to_shrink<1) {
    printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_c<0) {
    printf("\nThe C parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->transduction_posratio>1) {
    printf("\nThe fraction of unlabeled examples to classify as positives must\n");
    printf("be less than 1.0 !!!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_costratio<=0) {
    printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->epsilon_crit<=0) {
    printf("\nThe epsilon parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->rho<0) {
    printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
    printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
    printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
    printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
    printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
    printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
    wait_any_key();
    print_help();
    exit(0);
  }
}

void wait_any_key()
{
  printf("\n(more)\n");
  (void)getc(stdin);
}

void print_help()
{
  printf("\nSVM-light %s: Support Vector Machine, learning module     %s\n",VERSION,VERSION_DATE);
  copyright_notice();
  printf("   usage: svm_learn [options] example_file model_file\n\n");
  printf("Arguments:\n");
  printf("         example_file-> file with training data\n");
  printf("         model_file  -> file to store learned decision rule in\n");

  printf("General options:\n");
  printf("         -?          -> this help\n");
  printf("         -v [0..3]   -> verbosity level (default 1)\n");
  printf("Learning options:\n");
  printf("         -z {c,r,p}  -> select between classification (c), regression (r),\n");
  printf("                        and preference ranking (p) (default classification)\n");
  printf("         -c float    -> C: trade-off between training error\n");
  printf("                        and margin (default [avg. x*x]^-1)\n");
  printf("         -w [0..]    -> epsilon width of tube for regression\n");
  printf("                        (default 0.1)\n");
  printf("         -j float    -> Cost: cost-factor, by which training errors on\n");
  printf("                        positive examples outweight errors on negative\n");
  printf("                        examples (default 1) (see [4])\n");
  printf("         -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead\n");
  printf("                        of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
  printf("         -i [0,1]    -> remove inconsistent training examples\n");
  printf("                        and retrain (default 0)\n");
  printf("Performance estimation options:\n");
  printf("         -x [0,1]    -> compute leave-one-out estimates (default 0)\n");
  printf("                        (see [5])\n");
  printf("         -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning\n");
  printf("                        leave-one-out computation (default 1.0) (see [2])\n");
  printf("         -k [0..100] -> search depth for extended XiAlpha-estimator \n");
  printf("                        (default 0)\n");
  printf("Transduction options (see [3]):\n");
  printf("         -p [0..1]   -> fraction of unlabeled examples to be classified\n");
  printf("                        into the positive class (default is the ratio of\n");
  printf("                        positive and negative examples in the training data)\n");
  printf("Kernel options:\n");
  printf("         -t int      -> type of kernel function:\n");
  printf("                        0: linear (default)\n");
  printf("                        1: polynomial (s a*b+c)^d\n");
  printf("                        2: radial basis function exp(-gamma ||a-b||^2)\n");
  printf("                        3: sigmoid tanh(s a*b + c)\n");
  printf("                        4: user defined kernel from kernel.h\n");
  printf("         -d int      -> parameter d in polynomial kernel\n");
  printf("         -g float    -> parameter gamma in rbf kernel\n");
  printf("         -s float    -> parameter s in sigmoid/poly kernel\n");
  printf("         -r float    -> parameter c in sigmoid/poly kernel\n");
  printf("         -u string   -> parameter of user defined kernel\n");
  printf("Optimization options (see [1]):\n");
  printf("         -q [2..]    -> maximum size of QP-subproblems (default 10)\n");
  printf("         -n [2..q]   -> number of new variables entering the working set\n");
  printf("                        in each iteration (default n = q). Set n<q to prevent\n");
  printf("                        zig-zagging.\n");
  printf("         -m [5..]    -> size of cache for kernel evaluations in MB (default 40)\n");
  printf("                        The larger the faster...\n");
  printf("         -e float    -> eps: Allow that error for termination criterion\n");
  printf("                        [y [w*x+b] - 1] >= eps (default 0.001)\n");
  printf("         -y [0,1]    -> restart the optimization from alpha values in file\n");
  printf("                        specified by -a option. (default 0)\n");
  printf("         -h [5..]    -> number of iterations a variable needs to be\n"); 
  printf("                        optimal before considered for shrinking (default 100)\n");
  printf("         -f [0,1]    -> do final optimality check for variables removed\n");
  printf("                        by shrinking. Although this test is usually \n");
  printf("                        positive, there is no guarantee that the optimum\n");
  printf("                        was found if the test is omitted. (default 1)\n");
  printf("         -y string   -> if option is given, reads alphas from file with given\n");
  printf("                        and uses them as starting point. (default 'disabled')\n");
  printf("         -# int      -> terminate optimization, if no progress after this\n");
  printf("                        number of iterations. (default 100000)\n");
  printf("Output options:\n");
  printf("         -l string   -> file to write predicted labels of unlabeled\n");
  printf("                        examples into after transductive learning\n");
  printf("         -a string   -> write all alphas to this file after learning\n");
  printf("                        (in the same order as in the training set)\n");
  wait_any_key();
  printf("\nMore details in:\n");
  printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
  printf("    Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n");
  printf("    A. Smola (ed.), MIT Press, 1999.\n");
  printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
  printf("    Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
  printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
  printf("    Vector Machines. International Conference on Machine Learning (ICML),\n");
  printf("    1999.\n");
  printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
  printf("    with a knowledge-based approach - A case study in intensive care  \n");
  printf("    monitoring. International Conference on Machine Learning (ICML), 1999.\n");
  printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
  printf("    Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
  printf("    2002.\n\n");
}


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
本田岬高潮一区二区三区| 毛片av一区二区| 精品久久久久久久久久久院品网 | 一本大道av一区二区在线播放| 日韩精品福利网| 五月综合激情网| 亚洲风情在线资源站| 午夜精品一区在线观看| 亚洲成人av一区二区| 亚洲一区二区三区精品在线| 亚洲成人第一页| 麻豆精品久久精品色综合| 黄色精品一二区| 国产成人免费视频精品含羞草妖精| 国产永久精品大片wwwapp| 国产一区二区三区黄视频 | 免费的成人av| 久久国产乱子精品免费女| 国产在线国偷精品免费看| 国产成人亚洲精品青草天美| 91社区在线播放| 欧美日韩国产综合一区二区| 91精品国产综合久久久久久久| 精品乱人伦一区二区三区| 国产午夜精品福利| 一区二区三区影院| 免费亚洲电影在线| www.亚洲色图.com| 欧美无砖专区一中文字| 欧美高清视频不卡网| 精品99999| 国产精品福利影院| 日韩专区在线视频| 国产乱理伦片在线观看夜一区| 成人h动漫精品| 欧美午夜精品一区二区蜜桃| 欧美午夜寂寞影院| 欧美激情综合网| 亚洲精品国产一区二区三区四区在线| 亚洲成av人片| 国产黄色精品视频| 欧美视频一区在线| 国产亚洲欧美日韩俺去了| 亚洲一区二区三区四区在线 | 日韩欧美的一区| 亚洲欧美日韩一区二区| 琪琪久久久久日韩精品| 色婷婷av久久久久久久| 欧美精品一区二区在线播放| 亚洲一区二区高清| 成人福利电影精品一区二区在线观看| 91精品黄色片免费大全| 亚洲人成影院在线观看| 国产成人综合在线| 91精品在线观看入口| 亚洲黄色尤物视频| 成人app在线观看| 久久综合久久99| 日韩国产欧美视频| 色婷婷综合久久久久中文一区二区 | 国产成人综合自拍| 欧美变态tickle挠乳网站| 亚洲第一在线综合网站| 99久久国产综合精品色伊| 精品成人免费观看| 日韩av一区二区在线影视| 欧美性大战久久久| 亚洲日本免费电影| 99久久国产综合色|国产精品| 国产精品视频一二| 国产成人aaa| 国产亚洲人成网站| 国产东北露脸精品视频| 久久看人人爽人人| 国产成人在线网站| 国产精品免费免费| 成人美女在线视频| 国产精品久久一级| av成人老司机| 亚洲永久精品大片| 精品视频1区2区3区| 五月婷婷激情综合网| 欧美伦理电影网| 麻豆免费看一区二区三区| 91精品国产综合久久福利 | 国产白丝网站精品污在线入口| 欧美sm极限捆绑bd| 国产资源在线一区| 国产女主播一区| 9l国产精品久久久久麻豆| 亚洲卡通动漫在线| 欧美老年两性高潮| 久久不见久久见免费视频7| 久久亚洲综合色一区二区三区| 国产一区二区三区| 国产精品免费视频网站| 91福利视频网站| 美腿丝袜亚洲色图| 国产偷国产偷精品高清尤物 | 欧美一区二区三区人| 久色婷婷小香蕉久久| 国产精品美女一区二区| 欧洲精品中文字幕| 久久超碰97人人做人人爱| 国产精品成人免费精品自在线观看| 91麻豆成人久久精品二区三区| 日韩精品午夜视频| 中文字幕欧美日本乱码一线二线| 色噜噜久久综合| 久久丁香综合五月国产三级网站| 国产网站一区二区| 在线不卡中文字幕| 丁香一区二区三区| 亚洲第一av色| 国产色产综合产在线视频| 欧美三级韩国三级日本一级| 精品中文字幕一区二区小辣椒| 1024精品合集| 精品美女在线播放| 欧美视频一区在线观看| 国产福利一区二区| 日本欧美加勒比视频| 中文字幕一区二区三区在线不卡| 4hu四虎永久在线影院成人| 成a人片国产精品| 激情六月婷婷久久| 亚洲h在线观看| 亚洲精品国产精品乱码不99| 久久无码av三级| 777xxx欧美| 色综合久久综合网| 成人久久18免费网站麻豆| 美女视频一区在线观看| 亚洲狠狠丁香婷婷综合久久久| 国产亚洲1区2区3区| 欧美一级在线观看| 欧美日韩不卡在线| 91免费精品国自产拍在线不卡| 国产激情一区二区三区| 麻豆91精品91久久久的内涵| 亚洲一区在线免费观看| 成人免费视频在线观看| 国产日韩在线不卡| 精品国产免费久久| 精品捆绑美女sm三区| 日韩欧美一区二区久久婷婷| 欧美美女视频在线观看| 欧美日韩视频专区在线播放| 色婷婷精品大视频在线蜜桃视频| 不卡一区二区中文字幕| 成人综合在线观看| 国产成人a级片| 国产成人精品1024| 成人av网在线| av在线综合网| 色呦呦网站一区| 欧美自拍丝袜亚洲| 欧美亚洲丝袜传媒另类| 欧美性受xxxx黑人xyx性爽| 欧美色窝79yyyycom| 欧美日韩一本到| 欧美一区二区三区免费在线看| 欧美精品在线观看一区二区| 欧美一区二区日韩| 精品人伦一区二区色婷婷| 精品国产乱码91久久久久久网站| 欧美sm美女调教| 国产色一区二区| 国产精品对白交换视频| 一区二区三区91| 日韩二区三区在线观看| 激情小说亚洲一区| 大陆成人av片| 色国产精品一区在线观看| 欧美肥妇free| 亚洲精品在线免费播放| 中文字幕日韩精品一区| 自拍偷拍欧美激情| 国产乱子伦一区二区三区国色天香| 国产精品色在线| 一区二区三区在线不卡| 麻豆91免费观看| 久久国产免费看| 成人av电影在线观看| 欧美精品v国产精品v日韩精品 | 国产精品国产a级| 精品久久久久久久久久久久久久久久久 | 亚洲成人一区二区| 午夜欧美视频在线观看| 国产一区二区0| 成人黄色免费短视频| 粗大黑人巨茎大战欧美成人| 91浏览器在线视频| 欧美一区二区三区日韩视频| 久久久国产午夜精品| 亚洲视频一区二区免费在线观看| 亚洲成人激情综合网| 成人毛片在线观看| 久久精品夜色噜噜亚洲aⅴ| 1000部国产精品成人观看|