亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? zzxfactoring.txt

?? 大數運算類
?? TXT
字號:

/*****************************************************************************\

MODULE: ZZXFactoring

SUMMARY:

Routines are provided for factoring in ZZX.

See IMPLEMENTATION DETAILS below for a discussion of the algorithms used,
and of the flags available for selecting among these algorithms.

\*****************************************************************************/

#include <NTL/ZZX.h>
#include <NTL/pair_ZZX_long.h>

void SquareFreeDecomp(vec_pair_ZZX_long& u, const ZZX& f);
const vector(pair_ZZX_long SquareFreeDecomp(const ZZX& f);

// input is primitive, with positive leading coefficient.  Performs
// square-free decomposition.  If f = prod_i g_i^i, then u is set to a
// lest of pairs (g_i, i).  The list is is increasing order of i, with
// trivial terms (i.e., g_i = 1) deleted.


void MultiLift(vec_ZZX& A, const vec_zz_pX& a, const ZZX& f, long e,
               long verbose=0);

// Using current value p of zz_p::modulus(), this lifts the
// square-free factorization a mod p of f to a factorization A mod p^e
// of f.  It is required that f and all the polynomials in a are
// monic.



void SFFactor(vec_ZZX& factors, const ZZX& f, long verbose=0, long bnd=0);
vec_ZZX SFFactor(const ZZX& f, long verbose=0, long bnd=0);

// input f is primitive and square-free, with positive leading
// coefficient.  bnd, if not zero, indicates that f divides a
// polynomial h whose Euclidean norm is bounded by 2^{bnd} in absolute
// value.  This uses the routine SFCanZass in zz_pXFactoring and then
// performs a MultiLift, followed by a brute-force search for the
// factors.  

// A number of heuristics are used to speed up the factor-search step.
// See "implementation details" below.


void factor(ZZ& c,
            vec_pair_ZZX_long& factors,
            const ZZX& f,
            long verbose=0,
            long bnd=0);

// input f is is an arbitrary polynomial.  c is the content of f, and
// factors is the facrorization of its primitive part.  bnd is as in
// SFFactor.  The routine calls SquareFreeDecomp and SFFactor.

void mul(ZZX& x, const vec_pair_ZZX_long& a);
ZZX mul(const vec_pair_ZZX_long& a);
// multiplies polynomials, with multiplcities.




/*****************************************************************************\

IMPLEMENTATION DETAILS

To factor a polynomial, first its content is extracted, and it is
made squarefree.  This is typically very fast.

Second, a simple hack is performed: if the polynomial is of the
form g(x^l), then an attempt is made to factor g(k^m),
for divisors m of l, which can in some cases greatly simplify
the factorization task.
You can turn this "power hack" on/off by setting the following variable
to 1/0:

   extern long ZZXFac_PowerHack;  // initial value = 1


Third, the polynomial is factored modulo several
small primes, and one small prime p is selected as the "best".
You can choose the number of small primes that you want to use
by setting the following variable:

   extern long ZZXFac_InitNumPrimes;  // initial value = 7

Fourth, The factorization mod p is "lifted" to a factorization mod p^k
for a sufficiently large k.  This is done via quadratic Hensel
lifting.  Despite "folk wisdom" to the contrary, this is much
more efficient than linear Hensel lifting, especially since NTL
has very fast polynomial arithmetic.

After the "lifting phase" comes the "factor recombination phase".
The factorization mod p^k may be "finer" than the true factorization
over the integers, hence we have to "combine" subsets of modular factors
and test if these are factors over the integers.

There are two basic strategies:  the "Zassenhaus" method
and the "van Hoeij" method.

The van Hoeij method:

The van Hoeij method is fairly new, but it is so much better than
the older, Zassenhaus method, that it is now the default.
For a description of the method, go to Mark van Hoeij's home page:

   http://www.openmath.org/~hoeij/

The van Hoeij method is not really a specific algorithm, but a general
algorithmic approach: many parameters and strategies have to be selected
to obtain a specific algorithm, and it is a challenge to
make all of these choices so that the resulting algorithm works
fairly well on all input polynomials.

Set the following variable to 1 to enable the van Hoeij method,
and to 0 to revert to the Zassenhaus method:

   extern long ZZXFac_van_Hoeij; // initial value = 1

Note that the "power hack" is still on by default when using van Hoeij's
method, but we have arranged things so that the "power hack" strategy 
is abandoned if it appears to be too much a waste of time.
Unlike with the Zassenhaus method, using the "power hack" method with
van Hoeij can sometimes be a huge waste of time if one is not careful.



The Zassenhaus method:

The Zassenhaus method is essentially a brute-force search, but with
a lot of fancy "pruning" techniques, as described in the paper
[J. Abbott, V. Shoup, P. Zimmermann, "Factoring in Z[x]: the searching phase",
ISSAC 2000].

These heuristics are fairly effective, and allow one to easily deal
with up to around 30-40 modular factors, which is *much* more
than other Zassenhaus-based factorizers can deal with; however, after this, 
the exponential behavior of the algorithm really starts to dominate.

The behaviour of these heuristics can be fine tuned by
setting the following global variables:

   extern long ZZXFac_MaxNumPrimes;  // initial value = 50
   // During the factor recombination phase, if not much progress
   // is being made, occasionally more "local" information is 
   // collected by factoring f modulo another prime.
   // This "local" information is used to rule out degrees 
   // of potential factors during recombination.
   // This value bounds the total number of primes modulo which f 
   // is factored.

   extern long ZZXFac_MaxPrune;  // initial value = 10
   // A kind of "meet in the middle" strategy is used
   // to prune the search space during recombination.
   // For many (but not all) polynomials, this can greatly
   // reduce the running time.
   // When it does work, there is a time-space tradeoff:
   // If t = ZZXFac_MaxPrune, the running time will be reduced by a factor near
   // 2^t, but the table will take (at most) t*2^(t-1) bytes of storage.
   // Note that ZZXFac_MaxPrune is treated as an upper bound on t---the
   // factoring algorithm may decide to use a smaller value of t for
   // a number of reasons.



\*****************************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成av人片| 欧美在线高清视频| 欧美少妇xxx| 国产午夜精品在线观看| 亚洲国产一区二区三区| 成人精品国产免费网站| 这里只有精品免费| 亚洲精品欧美专区| 成人小视频免费观看| 欧美一级精品大片| 亚洲一区二区三区在线| 粉嫩久久99精品久久久久久夜| 91精品国产综合久久久久久久 | 国产精品羞羞答答xxdd| eeuss鲁片一区二区三区在线观看| 日韩一区二区三区精品视频| 一区二区三区精密机械公司| 欧美一区二区高清| 亚洲综合小说图片| 99精品欧美一区| 精品乱码亚洲一区二区不卡| 亚洲国产va精品久久久不卡综合 | 久久色成人在线| 手机精品视频在线观看| 在线观看免费成人| 亚洲欧美偷拍卡通变态| 91在线精品一区二区三区| 欧美成人精品二区三区99精品| 欧美私模裸体表演在线观看| 亚洲人吸女人奶水| 91在线观看高清| 一区免费观看视频| 91丨porny丨最新| **性色生活片久久毛片| 95精品视频在线| 夜夜嗨av一区二区三区网页| 色婷婷久久久久swag精品| 依依成人精品视频| 在线看日韩精品电影| 亚洲成人手机在线| 制服视频三区第一页精品| 首页国产丝袜综合| 2020国产精品久久精品美国| 国产一区二区三区免费观看| 久久久www成人免费无遮挡大片| 国模冰冰炮一区二区| 国产亚洲精品中文字幕| 成人精品gif动图一区| 亚洲精品欧美专区| 制服丝袜中文字幕一区| 美女视频黄 久久| 国产三级精品在线| www.日韩在线| 亚洲成a人片在线观看中文| 欧美日韩精品久久久| 另类成人小视频在线| 欧美精品一区二区三区蜜臀| 不卡影院免费观看| 亚洲午夜久久久久久久久电影院| 欧美一区二区福利视频| 国产成人高清在线| 亚洲综合色自拍一区| 日韩一二三区视频| 成人免费av在线| 午夜在线成人av| 久久精品一二三| 欧美色窝79yyyycom| 久久精品国产99国产| 国产精品麻豆久久久| 欧美视频精品在线观看| 国产又黄又大久久| 亚洲欧美日韩国产综合在线| 欧美精品日韩一本| 成人免费av在线| 日韩高清一区在线| 国产精品成人免费| 精品视频1区2区| 国产成人丝袜美腿| 日精品一区二区| 中文字幕一区三区| 日韩欧美色综合网站| 色悠悠亚洲一区二区| 国产精品一区2区| 亚洲aaa精品| 中文字幕日韩一区| www一区二区| 欧美日韩国产美| 91色.com| 国产精品一卡二| 日韩福利电影在线| 亚洲乱码国产乱码精品精98午夜| 日韩视频免费观看高清完整版在线观看| 成人激情视频网站| 国产一区二区在线观看视频| 亚洲妇熟xx妇色黄| 亚洲欧美欧美一区二区三区| 久久久久久久国产精品影院| 91.com视频| 欧美日韩免费一区二区三区视频| 成人开心网精品视频| 精品午夜久久福利影院| 日韩二区在线观看| 日韩精品视频网站| 午夜在线电影亚洲一区| 亚洲精品国产无天堂网2021| 欧美—级在线免费片| 久久久天堂av| 欧美精品一区二区三区蜜桃| 日韩一级黄色片| 91精品婷婷国产综合久久性色 | 精品在线免费观看| 三级影片在线观看欧美日韩一区二区| 一区二区三区欧美日| 亚洲日本电影在线| 亚洲人成影院在线观看| 中文字幕欧美三区| 国产精品视频免费看| 国产精品久久久久毛片软件| 国产欧美日产一区| 亚洲欧美在线视频观看| 中文字幕一区二区三区色视频| 国产精品―色哟哟| 亚洲欧美日韩系列| 一区二区在线电影| 亚洲国产毛片aaaaa无费看 | 欧美日韩一级视频| 这里只有精品视频在线观看| 欧美日韩国产高清一区| 91精品国产色综合久久不卡蜜臀 | 久久er99热精品一区二区| 免费视频最近日韩| 国产乱子伦视频一区二区三区| 久久国产视频网| 高清不卡一二三区| 91一区二区在线| 欧美日本一区二区三区| 日韩一区二区三区av| 精品国产sm最大网站| 中文字幕不卡一区| 依依成人精品视频| 免费人成黄页网站在线一区二区| 久久er精品视频| av激情综合网| 欧美日韩你懂得| 久久综合色鬼综合色| 一区精品在线播放| 午夜精品成人在线视频| 麻豆精品久久精品色综合| 国产传媒一区在线| 欧美日韩国产一二三| 久久久久久毛片| 亚洲老司机在线| 久久er精品视频| 在线观看日韩国产| 欧美刺激午夜性久久久久久久| 日本一区二区视频在线| 亚洲精品日韩综合观看成人91| 麻豆国产精品官网| 91视频91自| 久久久久久9999| 亚洲国产美国国产综合一区二区| 国产一区二区在线免费观看| 在线观看日韩一区| 国产亚洲一区二区三区四区| 亚洲综合色视频| 成人晚上爱看视频| 91精品国产色综合久久久蜜香臀| 综合久久国产九一剧情麻豆| 人人狠狠综合久久亚洲| 一本色道**综合亚洲精品蜜桃冫| 日韩三级电影网址| 一区二区三区欧美| 粉嫩一区二区三区性色av| 日韩女优制服丝袜电影| 亚洲一区二区三区四区的| 国产一区二区美女| 欧美一区二区三区四区高清| **性色生活片久久毛片| 国产a精品视频| 2欧美一区二区三区在线观看视频| 亚洲久本草在线中文字幕| 丁香五精品蜜臀久久久久99网站| 日韩写真欧美这视频| 亚洲午夜精品久久久久久久久| 成人激情免费网站| 国产女同互慰高潮91漫画| 秋霞电影一区二区| 91精品国产综合久久婷婷香蕉 | 在线视频你懂得一区二区三区| 久久久精品国产免大香伊| 天堂久久久久va久久久久| 欧美亚洲动漫精品| 一区二区在线看| 色呦呦国产精品| 一区二区三区中文字幕精品精品| 高清不卡一区二区在线| 中文一区二区完整视频在线观看 | 美国欧美日韩国产在线播放| 欧美日韩高清一区二区不卡| 亚洲伦在线观看|