亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gf2ex.txt

?? 大數運算類
?? TXT
?? 第 1 頁 / 共 2 頁
字號:
NOTE: A GF2EX may be used wherever a GF2EXModulus is required,
and a GF2EXModulus may be used wherever a GF2EX is required.


\**************************************************************************/

class GF2EXModulus {
public:
   GF2EXModulus(); // initially in an unusable state

   GF2EXModulus(const GF2EX& f); // initialize with f, deg(f) > 0

   GF2EXModulus(const GF2EXModulus&); // copy

   GF2EXModulus& operator=(const GF2EXModulus&); // assignment

   ~GF2EXModulus(); // destructor

   operator const GF2EX& () const; // implicit read-only access to f

   const GF2EX& val() const; // explicit read-only access to f
};

void build(GF2EXModulus& F, const GF2EX& f);
// pre-computes information about f and stores it in F.  Must have
// deg(f) > 0.  Note that the declaration GF2EXModulus F(f) is
// equivalent to GF2EXModulus F; build(F, f).

// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).


long deg(const GF2EXModulus& F);  // return n=deg(f)

void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n

void SqrMod(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
GF2EX SqrMod(const GF2EX& a, const GF2EXModulus& F);
// x = a^2 % f; deg(a) < n

void PowerMod(GF2EX& x, const GF2EX& a, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, const ZZ& e, const GF2EXModulus& F);

void PowerMod(GF2EX& x, const GF2EX& a, long e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, long e, const GF2EXModulus& F);

// x = a^e % f; e >= 0, deg(a) < n.  Uses a sliding window algorithm.
// (e may be negative)

void PowerXMod(GF2EX& x, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerXMod(const ZZ& e, const GF2EXModulus& F);

void PowerXMod(GF2EX& x, long e, const GF2EXModulus& F);
GF2EX PowerXMod(long e, const GF2EXModulus& F);

// x = X^e % f (e may be negative)

void rem(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
// x = a % f

void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EXModulus& F);
// q = a/f, r = a%f

void div(GF2EX& q, const GF2EX& a, const GF2EXModulus& F);
// q = a/f

// operator notation:

GF2EX operator/(const GF2EX& a, const GF2EXModulus& F);
GF2EX operator%(const GF2EX& a, const GF2EXModulus& F);

GF2EX& operator/=(GF2EX& x, const GF2EXModulus& F);
GF2EX& operator%=(GF2EX& x, const GF2EXModulus& F);



/**************************************************************************\

                             vectors of GF2EX's

\**************************************************************************/

NTL_vector_decl(GF2EX,vec_GF2EX)
// vec_GF2EX

NTL_eq_vector_decl(GF2EX,vec_GF2EX)
// == and !=

NTL_io_vector_decl(GF2EX,vec_GF2EX)
// I/O operators



/**************************************************************************\

                              Modular Composition

Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.

The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.


\**************************************************************************/

void CompMod(GF2EX& x, const GF2EX& g, const GF2EX& h, const GF2EXModulus& F);
GF2EX CompMod(const GF2EX& g, const GF2EX& h, 
                    const GF2EXModulus& F);

// x = g(h) mod f; deg(h) < n

void Comp2Mod(GF2EX& x1, GF2EX& x2, const GF2EX& g1, const GF2EX& g2,
              const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.


void Comp3Mod(GF2EX& x1, GF2EX& x2, GF2EX& x3, 
              const GF2EX& g1, const GF2EX& g2, const GF2EX& g3,
              const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.



/**************************************************************************\

                     Composition with Pre-Conditioning

If a single h is going to be used with many g's then you should build
a GF2EXArgument for h, and then use the compose routine below.  The
routine build computes and stores h, h^2, ..., h^m mod f.  After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.

\**************************************************************************/


struct GF2EXArgument {
   vec_GF2EX H;
};

void build(GF2EXArgument& H, const GF2EX& h, const GF2EXModulus& F, long m);
// Pre-Computes information about h.  m > 0, deg(h) < n.

void CompMod(GF2EX& x, const GF2EX& g, const GF2EXArgument& H, 
             const GF2EXModulus& F);

GF2EX CompMod(const GF2EX& g, const GF2EXArgument& H, 
                    const GF2EXModulus& F);

extern long GF2EXArgBound;

// Initially 0.  If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// GF2EXArgBound KB.  Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below, 
// and indirectly affects many routines in GF2EXFactoring.

/**************************************************************************\

                     power projection routines

\**************************************************************************/

void project(GF2E& x, const GF2EVector& a, const GF2EX& b);
GF2E project(const GF2EVector& a, const GF2EX& b);
// x = inner product of a with coefficient vector of b


void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
                   const GF2EX& h, const GF2EXModulus& F);

vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
                   const GF2EX& h, const GF2EXModulus& F);

// Computes the vector

//    project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  

// This operation is the "transpose" of the modular composition operation.

void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
                   const GF2EXArgument& H, const GF2EXModulus& F);

vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
                   const GF2EXArgument& H, const GF2EXModulus& F);

// same as above, but uses a pre-computed GF2EXArgument

class GF2EXTransMultiplier { /* ... */ };

void build(GF2EXTransMultiplier& B, const GF2EX& b, const GF2EXModulus& F);



void UpdateMap(vec_GF2E& x, const vec_GF2E& a,
               const GF2EXMultiplier& B, const GF2EXModulus& F);

vec_GF2E UpdateMap(const vec_GF2E& a,
               const GF2EXMultiplier& B, const GF2EXModulus& F);

// Computes the vector

//    project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)

// Restriction: a.length() <= deg(F), deg(b) < deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output always has high order zeroes stripped.


/**************************************************************************\

                              Minimum Polynomials

These routines should be used only when GF2E is a field.

All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.

\**************************************************************************/


void MinPolySeq(GF2EX& h, const vec_GF2E& a, long m);
GF2EX MinPolySeq(const vec_GF2E& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m


void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F);

// computes the monic minimal polynomial if (g mod f).  m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n.  The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/2^{GF2E::degree()}.

void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F);

// same as above, but guarantees that result is correct

void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);

void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F);

// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible.  The algorithm is
// deterministic (and is always correct).


/**************************************************************************\

           Composition and Minimal Polynomials in towers

These are implementations of algorithms that will be described
and analyzed in a forthcoming paper.

GF2E need not be a field.

\**************************************************************************/


void CompTower(GF2EX& x, const GF2X& g, const GF2EXArgument& h,
             const GF2EXModulus& F);

GF2EX CompTower(const GF2X& g, const GF2EXArgument& h,
             const GF2EXModulus& F);

void CompTower(GF2EX& x, const GF2X& g, const GF2EX& h,
             const GF2EXModulus& F);

GF2EX CompTower(const GF2X& g, const GF2EX& h,
             const GF2EXModulus& F);


// x = g(h) mod f


void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F,
                      long m);

GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Uses a probabilistic algorithm to compute the minimal
// polynomial of (g mod f) over GF2.
// The parameter m is a bound on the degree of the minimal polynomial
// (default = deg(f)*GF2E::degree()).
// In general, the result will be a divisor of the true minimimal
// polynomial.  For correct results, use the MinPoly routines below.



void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);

GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Same as above, but result is always correct.


void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);

GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);

void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);

GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F);

// Same as above, but assumes the minimal polynomial is
// irreducible, and uses a slightly faster, deterministic algorithm.



/**************************************************************************\

                   Traces, norms, resultants

\**************************************************************************/


void TraceMod(GF2E& x, const GF2EX& a, const GF2EXModulus& F);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& F);

void TraceMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)


void TraceVec(vec_GF2E& S, const GF2EX& f);
vec_GF2E TraceVec(const GF2EX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)

// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].

void NormMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E NormMod(const GF2EX& a, const GF2EX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)

void resultant(GF2E& x, const GF2EX& a, const GF2EX& b);
GF2E resultant(const GF2EX& a, const GF2EX& b);
// x = resultant(a, b)

// NormMod and resultant require that GF2E is a field.



/**************************************************************************\

                           Miscellany

A GF2EX f is represented as a vec_GF2E, which can be accessed as
f.rep.  The constant term is f.rep[0] and the leading coefficient is
f.rep[f.rep.length()-1], except if f is zero, in which case
f.rep.length() == 0.  Note that the leading coefficient is always
nonzero (unless f is zero).  One can freely access and modify f.rep,
but one should always ensure that the leading coefficient is nonzero,
which can be done by invoking f.normalize().


\**************************************************************************/


void clear(GF2EX& x) // x = 0
void set(GF2EX& x); // x = 1

void GF2EX::normalize();  
// f.normalize() strips leading zeros from f.rep.

void GF2EX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The
// polynomial that f represents is unchanged.

void GF2EX::kill();
// f.kill() sets f to 0 and frees all memory held by f.  Equivalent to
// f.rep.kill().

GF2EX::GF2EX(INIT_SIZE_TYPE, long n);
// GF2EX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients

static const GF2EX& zero();
// GF2EX::zero() is a read-only reference to 0

void swap(GF2EX& x, GF2EX& y); 
// swap x and y (via "pointer swapping")

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区视频在线| 91小视频免费观看| 欧美www视频| 国产精品一区免费在线观看| 国产亚洲欧美日韩日本| 国产91色综合久久免费分享| 国产精品久久久久久久浪潮网站 | 精品一区二区日韩| 精品福利一区二区三区| 国产一级精品在线| 亚洲人成在线播放网站岛国| 欧美亚日韩国产aⅴ精品中极品| 亚洲福利一二三区| 日韩美一区二区三区| 国产成人精品www牛牛影视| 亚洲视频在线观看三级| 欧美日韩视频一区二区| 国产一区二区导航在线播放| 亚洲日本在线视频观看| 欧美日本一区二区三区四区| 久久se这里有精品| 国产精品第一页第二页第三页| 在线看不卡av| 国产乱淫av一区二区三区| 成人欧美一区二区三区视频网页 | 99视频有精品| 天堂在线亚洲视频| 久久精品夜色噜噜亚洲aⅴ| 99麻豆久久久国产精品免费| 亚洲国产一区视频| 日本一区二区三级电影在线观看| 在线观看国产日韩| 国产精品一区二区三区乱码| 伊人夜夜躁av伊人久久| xnxx国产精品| 欧美日本一区二区在线观看| 国产99久久久精品| 婷婷成人综合网| 国产精品色眯眯| 欧美tk丨vk视频| 99免费精品视频| 久久国产欧美日韩精品| 亚洲一区二区在线视频| 久久综合国产精品| 欧美日韩成人一区二区| 99久久精品久久久久久清纯| 久久99精品国产| 丝袜a∨在线一区二区三区不卡| 国产精品日产欧美久久久久| 91精品一区二区三区久久久久久| av一区二区久久| 国产揄拍国内精品对白| 日本美女一区二区三区| 亚洲国产欧美日韩另类综合| 国产精品视频yy9299一区| 久久综合资源网| 555夜色666亚洲国产免| 欧美日韩在线精品一区二区三区激情| 国产大陆亚洲精品国产| 毛片av中文字幕一区二区| 亚洲成人av一区| 亚洲免费观看高清完整版在线观看 | 舔着乳尖日韩一区| 专区另类欧美日韩| 中文字幕不卡在线观看| 久久综合久久鬼色中文字| 欧美一区二区视频在线观看2022| 色女孩综合影院| 91啪在线观看| 色综合网色综合| 91社区在线播放| 91蜜桃网址入口| 一本一本大道香蕉久在线精品| a在线播放不卡| 99精品国产99久久久久久白柏 | 一区二区不卡在线播放| 亚洲女与黑人做爰| 亚洲欧美日韩在线播放| 国产精品区一区二区三| 国产精品嫩草久久久久| 国产精品女主播av| 中文字幕成人网| 亚洲视频1区2区| 亚洲视频综合在线| 一区二区三区四区在线免费观看| 国产精品高潮久久久久无| 国产精品久久久久永久免费观看 | 欧美精品xxxxbbbb| 7777精品久久久大香线蕉| 91精品国产全国免费观看| 日韩一区二区在线看| 69久久99精品久久久久婷婷| 精品国内片67194| 欧美国产一区在线| 亚洲六月丁香色婷婷综合久久| 亚洲激情在线激情| 日本视频免费一区| 国产成人av自拍| 色综合天天在线| 欧美一卡2卡三卡4卡5免费| 精品少妇一区二区三区| 国产精品成人在线观看| 一个色妞综合视频在线观看| 日韩在线卡一卡二| 国产精品一二三四五| 色综合久久99| 欧美精品一区在线观看| 国产精品久久久久久久久久免费看 | 高清在线观看日韩| 国产精品一二三区在线| 国产乱对白刺激视频不卡| 国产成人亚洲综合a∨婷婷图片| 丁香另类激情小说| 91免费精品国自产拍在线不卡 | 成人教育av在线| 日韩午夜电影在线观看| 精品欧美黑人一区二区三区| 国产农村妇女毛片精品久久麻豆| 日韩一区在线看| 五月激情六月综合| 成人午夜av电影| 在线国产亚洲欧美| 欧美一区二区三区视频免费| 国产亚洲一区字幕| 一区二区三区精密机械公司| 男女男精品视频网| 风间由美一区二区av101| 色88888久久久久久影院按摩| 678五月天丁香亚洲综合网| 精品久久久久一区| 亚洲精品一区二区三区香蕉| 亚洲综合免费观看高清完整版在线| 天堂va蜜桃一区二区三区| 国产成人丝袜美腿| 欧美综合欧美视频| 2019国产精品| 偷窥国产亚洲免费视频 | 国产中文字幕一区| 91小视频免费观看| 欧美大片一区二区| 国产精品成人午夜| 国产美女在线精品| 5566中文字幕一区二区电影| 国产精品理伦片| 美女mm1313爽爽久久久蜜臀| 一本一道综合狠狠老| 国产精品久久久久久久久果冻传媒 | 国产凹凸在线观看一区二区| 欧美三级日韩三级国产三级| 国产精品无圣光一区二区| 久久精品国产网站| 欧美日韩综合色| 中文字幕日本不卡| 国产最新精品免费| 欧美一级搡bbbb搡bbbb| 午夜精品久久久久久久久久久| 国产91精品免费| 欧美mv日韩mv| 免费人成在线不卡| 欧美日韩精品一区二区| 亚洲国产一区二区视频| 一本色道**综合亚洲精品蜜桃冫 | 欧美日韩不卡视频| 亚洲人成亚洲人成在线观看图片| 欧美a一区二区| 日韩欧美激情一区| 视频一区欧美精品| 欧美在线观看一区二区| 中文字幕一区二区三区色视频| 日韩精彩视频在线观看| 欧美日韩午夜在线视频| 一区二区三区欧美亚洲| 91丝袜呻吟高潮美腿白嫩在线观看| 国产亚洲婷婷免费| 久久国产精品无码网站| 亚洲精品在线观看视频| 韩国欧美国产一区| 欧美精品一区二区三区很污很色的 | 亚洲裸体在线观看| 色综合久久久久综合99| 亚洲视频电影在线| 99精品视频一区二区三区| 国产日韩精品一区二区三区在线| 高清不卡一区二区在线| 久久看人人爽人人| 成人美女视频在线观看18| 欧美国产精品专区| 国产精品一二三| 亚洲三级久久久| 在线视频亚洲一区| 天天操天天干天天综合网| 91精品国产一区二区人妖| 国产毛片一区二区| 中文字幕欧美日韩一区| 成人18视频日本| 亚洲一区二区视频在线| 日韩一级成人av| 成人黄色av电影| 亚洲成a人在线观看| 日韩精品中文字幕一区|