?? bitmap.cc
字號:
/////////////////////////////////////////////////////////////////////////////// File: fixedobstacle.cc// Author: Andrew Howard// Date: 29 Dec 2001// Desc: Simulates fixed obstacles//// CVS info:// $Source: /cvsroot/playerstage/code/stage/src/models/Attic/bitmap.cc,v $// $Author: rtv $// $Revision: 1.2.2.1 $/////////////////////////////////////////////////////////////////////////////#include <float.h>#include "image.hh"#include "world.hh"#include "bitmap.hh"#define DEBUG///////////////////////////////////////////////////////////////////////////// Default constructorCBitmap::CBitmap(LibraryItem* libit, CWorld *world, CEntity *parent) : CEntity(libit, world, parent){ vision_return = true; laser_return = LaserVisible; sonar_return = true; obstacle_return = true; puck_return = false; // we trade velocities with pucks idar_return = IDARReflect; this->crop_ax = -DBL_MAX; this->crop_ay = -DBL_MAX; this->crop_bx = +DBL_MAX; this->crop_by = +DBL_MAX; this->filename = NULL; this->scale = 1.0 / m_world->ppm; this->image = NULL;#ifdef INCLUDE_RTK2 // We cant move fixed obstacles (yet!) this->movemask = 0; // TODO - add Update() method so we can move bitmaps around //this->movemask = RTK_MOVE_TRANS | RTK_MOVE_ROT;#endif}///////////////////////////////////////////////////////////////////////////// Load the entity from the worldfilebool CBitmap::Load(CWorldFile *worldfile, int section){ PRINT_DEBUG2( "Loading from %p, %d\n", worldfile, section ); if (!CEntity::Load(worldfile, section)) return false; // Get the name of the image file to load. this->filename = worldfile->ReadFilename(section, "file", NULL); if (!this->filename || strlen(this->filename) == 0) { PRINT_ERR("empty filename"); return false; } // Get the scale of the image; // i.e. the width/length of each pixel in m. // If no scale is specified, use the world resolution. this->scale = worldfile->ReadLength(section, "scale", 0 ); if( this->scale != 0 ) PRINT_WARN("worldfile bitmap keyword 'scale' is deprecated," " please use 'resolution <meters per pixel>' instead"); // Get the scale of the image; // i.e. the width/length of each pixel in m. // If no scale is specified, use the world resolution. this->scale = worldfile->ReadLength(section, "resolution", this->scale ); if (this->scale == 0) { this->scale = 1.0 / m_world->ppm; PRINT_WARN2("\n\t- no resolution specified for image [%s]; using world default of %.2f", this->filename, this->scale ); } // Get the crop region; // i.e. the bit of the image we are interested in this->crop_ax = worldfile->ReadTupleLength(section, "crop", 0, -DBL_MAX); this->crop_ay = worldfile->ReadTupleLength(section, "crop", 1, -DBL_MAX); this->crop_bx = worldfile->ReadTupleLength(section, "crop", 2, +DBL_MAX); this->crop_by = worldfile->ReadTupleLength(section, "crop", 3, +DBL_MAX); // Create and load the image here (we need to know its size) // Try to guess the file type from the extension. assert( this->image = new Nimage ); int len = strlen(this->filename); if (strcmp(&(this->filename[len - 4]), ".fig") == 0) { /* REINSTATE someday if (!img.load_fig(this->filename, this->ppm, this->scale)) return false; */ return false; } else if( strcmp( &(this->filename[ len - 7 ]), ".pnm.gz" ) == 0 ) { if (!this->image->load_pnm_gz(this->filename)) return false; } else { if (!this->image->load_pnm(this->filename)) return false; } // Compute the object size based on the image this->size_x = this->scale * this->image->width; this->size_y = this->scale * this->image->height; // is the pose explicitly set? // if the pose was NOT set in the worldfile if( (worldfile->ReadTupleLength( section, "pose", 0, DBL_MAX ) == DBL_MAX) ) { // we shift so the global origin is at the bottom left corner of the image this->SetGlobalPose( this->size_x/2.0, size_y/2.0, 0); // record this position as the initial pose se we don't try to save it later this->GetPose( init_px, init_py, init_pth ); } // draw a border around the image //this->image->draw_box(0,0,this->image->width-1, this->image->height-1, 255 ); // scan the image into a vector of rectangle descriptions double sx = this->scale; double sy = this->scale; // Draw the image into the matrix (and GUI if compiled in) // RTV - this box-drawing algorithm compresses hospital.world from // 104,000+ pixels to 5,757 rectangles. it's not perfect but pretty // darn good with bitmaps featuring lots of horizontal and vertical // lines - such as most worlds. Also combined matrix & gui // rendering loops. hospital.pnm.gz now loads more than twice as // fast and redraws waaaaaay faster. yay! for (int y = 0; y < this->image->height; y++) { for (int x = 0; x < this->image->width; x++) { //m_world->Ticker(); if (this->image->get_pixel(x, y) == 0) continue; // a rectangle starts from this point int startx = x; int starty = this->image->height - y; int height = this->image->height; // assume full height for starters // grow the width - scan along the line until we hit an empty pixel for( ; this->image->get_pixel( x, y ) > 0; x++ ) { // handle horizontal cropping double ppx = x * sx; if (ppx < this->crop_ax || ppx > this->crop_bx) continue; // look down to see how large a rectangle below we can make int yy = y; while( (this->image->get_pixel( x, yy ) > 0 ) && (yy < this->image->height) ) { // handle vertical cropping double ppy = (this->image->height - yy) * sy; if (ppy < this->crop_ay || ppy > this->crop_by) continue; yy++; } // now yy is the depth of a line of non-zero pixels // downward we store the smallest depth - that'll be the // height of the rectangle if( yy-y < height ) height = yy-y; // shrink the height to fit } int width = x - startx; // delete the pixels we have used in this rect this->image->fast_fill_rect( startx, y, width, height, 0 ); double px = ((startx + (width/2.0) + 0.5 ) * sx) - size_x/2.0; double py = ((starty - (height/2.0) - 0.5 ) * sy) - size_y/2.0; //double pth = 0; double pw = width * sx; double ph = height * sy; // store the rectangles for drawing into the GUI later bitmap_rectangle_t r; r.x = px; r.y = py; r.w = pw; r.h = ph; bitmap_rects.push_back( r ); // create a matrix rectangle in global coordinates //this->LocalToGlobal( px, py, pth ); //m_world->SetRectangle( px, py, pth, pw, ph, this, true); } } return true;}bool ColorInRectangle( Nimage* image, uint8_t color, int x1, int y1, int x2, int y2 ){ // look in the rectangle for a pixel this color for( int p=x1; p<x2; p++ ) for( int q=y1; q<y2; q++ ) if( image->get_pixel( p, q ) == color ) return true; // found one! // we didn't find a pixel that color return false;}#ifdef INCLUDE_RTK2void CBitmap::BuildQuadTree( uint8_t color, int x1, int y1, int x2, int y2 ){ //printf( "QT: %d %d,%d %d,%d\n", color, x1,y1,x2,y2 ); if( ColorInRectangle( this->image, color, x1, y1, x2, y2 ) ) { int width = x2-x1; int height = y2-y1; // split the rectangle along its longest axis if( width > height ) { if( width <= 1 ) return; int xsplit = x1 + (x2-x1)/2; BuildQuadTree( color, x1, y1, xsplit, y2 ); BuildQuadTree( color, xsplit, y1, x2, y2 ); } else { if( height <=1 ) return; int ysplit = y1 + (y2-y1)/2; BuildQuadTree( color, x1, y1, x2, ysplit ); BuildQuadTree( color, x1, ysplit, x2, y2 ); } } else // add this rect to the figure { double width = (double)(x2-x1) * this->scale; double height = (double)(y2-y1) * this->scale; double px = (double)x1 * this->scale + width/2.0; double py = (double)(this->image->height - y1) * this->scale - height/2.0; //printf( "rect: %.2f,%.2f %.2f,%.2f\n", px, py, width, height ); // create a rectangle rtk_fig_rectangle( this->fig, px, py, 0.0, width, height, false); }}#endif///////////////////////////////////////////////////////////////////////////// Initialise object by Copying image into matrixbool CBitmap::Startup(){ if (!CEntity::Startup()) { PRINT_DEBUG( "CEntity::Startup() failed" ); return false; } if( !this->image ) { PRINT_DEBUG( "bitmap has no image" ); //rtk_fig_clear( this->fig ); return true; } // draw the add the rectangles we pre-computed in Load() into the matrix for( std::vector<bitmap_rectangle_t>::iterator it = bitmap_rects.begin(); it != bitmap_rects.end(); it++ ) { double th = 0; this->LocalToGlobal( it->x, it->y, th ); m_world->SetRectangle( it->x, it->y, th, it->w, it->h, this, true); //rtk_fig_rectangle(this->fig, it->x, it->y, 0, it->w, it->h, true ); } return true;}///////////////////////////////////////////////////////////////////////////// Finalize objectvoid CBitmap::Shutdown(){ CEntity::Shutdown();}#ifdef INCLUDE_RTK2void CBitmap::RtkStartup(){ CEntity::RtkStartup(); // bitmaps don't need labels //rtk_fig_clear( this->label ); rtk_fig_origin( this->fig, local_px, local_py, local_pth ); rtk_fig_color_rgb32(this->fig, this->color); // add the figure we pre-computed in Startup() above for( std::vector<bitmap_rectangle_t>::iterator it = bitmap_rects.begin(); it != bitmap_rects.end(); it++ ) rtk_fig_rectangle(this->fig, it->x, it->y, 0, it->w, it->h, true ); }#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -