亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 支撐向量機庫文件
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It can solve C-SVM classification,nu-SVM classification, one-class-SVM, epsilon-SVM regression, andnu-SVM regression. It also provides an automatic model selectiontool for C-SVM classification. This document explains the use oflibsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Quick Start===========If you are new to SVM and if the data is not large, please go to python directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]Installation============On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......<label> is the target value of the training data. For classification,it should be an integer which identifies a class (multi-class classificationis supported). For regression, it's any real number. For one-class SVM,it's not used so can be any number. <index> is an integer starting from 1,<value> is a real number. The labels in the testing data file are only used tocalculate accuracy or error. If they are unknown, just fill this column with anumber.There is a sample data for classification in this package:heart_scale.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then you type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy on the testdata. The `output' file contains the predicted class label.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1 or 2, "load" button to load data from a file, "save" button	to save data to a file, "run" button to obtain an SVM model,	and "clear" button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the classification but	not the regression case. Each data point has one label (the color)	and two attributes (x-axis and y-axis values).	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(You can download it from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(You can download it from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows directory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 40)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yetmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.Tips on practical use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the python directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 1000 -t 2 -g 0.5 -e 0.00001 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2) and stoppingtolerance 0.00001> svm-train -s 3 -p 0.1 -t 0 -c 10 data_fileSolve SVM regression with linear kernel u'v and C=10, and epsilon = 0.1in the loss function.> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 500 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 500 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesLibrary Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		double degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩免费性生活视频播放| 日韩成人伦理电影在线观看| 亚洲午夜久久久久中文字幕久| 亚洲bt欧美bt精品777| 激情亚洲综合在线| 99视频一区二区| 欧美一区二区三区在线电影| 久久久久久一二三区| 亚洲蜜臀av乱码久久精品| 美女一区二区在线观看| 成人午夜伦理影院| 91精品国产综合久久久久久久| 久久精品综合网| 怡红院av一区二区三区| 国产综合一区二区| 91久久精品一区二区二区| 欧美成人精品1314www| 亚洲人成在线播放网站岛国 | 99精品国产热久久91蜜凸| 欧美视频你懂的| 中文字幕精品综合| 欧美96一区二区免费视频| 成人短视频下载| 欧美一区二区视频网站| 亚洲人123区| 激情久久五月天| 精品视频资源站| 国产精品传媒视频| 麻豆成人av在线| 欧美三级日韩在线| 中文字幕在线一区| 久久91精品久久久久久秒播| 欧美日韩一区二区三区免费看 | 国产精品69久久久久水密桃| 欧美视频一区在线观看| 国产精品免费视频观看| 久久se这里有精品| 欧美日韩视频专区在线播放| 亚洲丝袜另类动漫二区| 国产裸体歌舞团一区二区| 欧美丰满嫩嫩电影| 亚洲精品视频在线观看免费| 国产激情一区二区三区桃花岛亚洲| 欧美二区乱c少妇| 一区二区在线免费| 不卡视频在线看| 久久综合色婷婷| 久久国产麻豆精品| 在线成人av网站| 亚洲资源中文字幕| 色综合天天综合狠狠| 国产精品网站在线播放| 国产一区二区精品久久91| 这里只有精品免费| 五月综合激情婷婷六月色窝| 日本福利一区二区| 亚洲视频一区在线观看| 99久久伊人久久99| 国产精品久久久久久久浪潮网站| 国产一区视频导航| 精品国产不卡一区二区三区| 日韩电影免费一区| 制服.丝袜.亚洲.另类.中文| 午夜av一区二区三区| 欧美巨大另类极品videosbest| 亚洲国产精品天堂| 欧美色窝79yyyycom| 夜夜揉揉日日人人青青一国产精品| 99热国产精品| 亚洲美女免费在线| 色狠狠桃花综合| 亚洲与欧洲av电影| 欧美性色欧美a在线播放| 亚洲一区二区三区视频在线 | 亚洲va欧美va国产va天堂影院| 在线免费观看不卡av| 亚洲永久精品大片| 欧美日韩免费观看一区二区三区 | 欧美一区二区三区四区久久| 青草国产精品久久久久久| 欧美一区二区三区免费在线看 | 久久亚洲一区二区三区四区| 老色鬼精品视频在线观看播放| 精品国产不卡一区二区三区| 国产乱人伦精品一区二区在线观看| 久久婷婷久久一区二区三区| 国产成人精品一区二区三区网站观看| 中文字幕av免费专区久久| 成人va在线观看| 一区二区三区免费观看| 欧美日韩免费视频| 精品无人区卡一卡二卡三乱码免费卡| 久久网这里都是精品| 成人蜜臀av电影| 亚洲男人电影天堂| 欧美二区在线观看| 国产精品亚洲а∨天堂免在线| 中文一区一区三区高中清不卡| 99这里都是精品| 婷婷综合另类小说色区| 欧美精品一区二区三区在线播放| 国产99久久久国产精品免费看| 中文字幕一区二区三区乱码在线| 欧美伊人久久久久久久久影院| 人人超碰91尤物精品国产| 久久网站最新地址| 91极品美女在线| 精品综合久久久久久8888| 中文字幕av在线一区二区三区| 91理论电影在线观看| 日韩1区2区日韩1区2区| 国产欧美精品一区二区三区四区| 日本久久电影网| 精品一区二区在线免费观看| 亚洲桃色在线一区| 欧美大片一区二区三区| av成人免费在线观看| 天堂影院一区二区| 欧美精彩视频一区二区三区| 欧美在线制服丝袜| 国产成+人+日韩+欧美+亚洲 | 91精品国产综合久久久久久久久久| 国产精品自在欧美一区| 亚洲国产精品一区二区久久恐怖片| 精品毛片乱码1区2区3区| 99国产精品久久久久| 日韩av一区二| 亚洲视频图片小说| 欧美大尺度电影在线| 91麻豆免费观看| 国内精品自线一区二区三区视频| 亚洲精品美国一| 久久久久久久久久久电影| 欧美午夜精品理论片a级按摩| 国产成人一区二区精品非洲| 亚洲成人资源在线| 国产精品每日更新| 日韩免费观看2025年上映的电影| 91麻豆国产在线观看| 国产制服丝袜一区| 亚洲成在线观看| 专区另类欧美日韩| 久久精品日产第一区二区三区高清版 | 日韩欧美三级在线| 中文字幕中文字幕在线一区| 欧美一区二区私人影院日本| 91在线一区二区三区| 国产乱码精品一区二区三区忘忧草| 亚洲国产综合91精品麻豆| 国产精品第13页| 久久久无码精品亚洲日韩按摩| 欧美日韩国产不卡| 91麻豆福利精品推荐| 国产成人鲁色资源国产91色综| 蜜臀av在线播放一区二区三区| 尤物视频一区二区| 国产精品麻豆欧美日韩ww| 亚洲精品在线电影| 日韩欧美三级在线| 欧美一区二区三级| 欧美日韩一区二区三区在线| 色婷婷综合久久久| jiyouzz国产精品久久| 国产成人精品影视| 国产一区二区导航在线播放| 老司机午夜精品| 久久精品国产99久久6| 日韩二区三区在线观看| 亚洲国产成人va在线观看天堂| 亚洲免费观看高清在线观看| 国产精品国产自产拍在线| 国产亲近乱来精品视频 | a亚洲天堂av| 成人精品电影在线观看| 国产成人自拍高清视频在线免费播放| 激情欧美一区二区| 精品一区二区三区免费毛片爱| 青草国产精品久久久久久| 男女男精品网站| 免费看黄色91| 久久精品国产99久久6| 国内久久精品视频| 国产精品亚洲人在线观看| 国产激情一区二区三区四区| 国产成人在线免费观看| 成人精品国产免费网站| 99re成人在线| 一本大道av伊人久久综合| 91免费观看视频| 欧美日产国产精品| 日韩三级.com| 精品日韩一区二区三区免费视频| 精品国产91九色蝌蚪| 久久美女艺术照精彩视频福利播放 | 偷拍日韩校园综合在线| 免费成人你懂的| 国产一区亚洲一区| av在线这里只有精品| 91行情网站电视在线观看高清版| 在线国产电影不卡|