亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? 支撐向量機(jī)庫(kù)文件
??
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It can solve C-SVM classification,nu-SVM classification, one-class-SVM, epsilon-SVM regression, andnu-SVM regression. It also provides an automatic model selectiontool for C-SVM classification. This document explains the use oflibsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Quick Start===========If you are new to SVM and if the data is not large, please go to python directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]Installation============On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......<label> is the target value of the training data. For classification,it should be an integer which identifies a class (multi-class classificationis supported). For regression, it's any real number. For one-class SVM,it's not used so can be any number. <index> is an integer starting from 1,<value> is a real number. The labels in the testing data file are only used tocalculate accuracy or error. If they are unknown, just fill this column with anumber.There is a sample data for classification in this package:heart_scale.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then you type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy on the testdata. The `output' file contains the predicted class label.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1 or 2, "load" button to load data from a file, "save" button	to save data to a file, "run" button to obtain an SVM model,	and "clear" button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the classification but	not the regression case. Each data point has one label (the color)	and two attributes (x-axis and y-axis values).	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(You can download it from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(You can download it from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows directory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 40)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yetmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.Tips on practical use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the python directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 1000 -t 2 -g 0.5 -e 0.00001 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2) and stoppingtolerance 0.00001> svm-train -s 3 -p 0.1 -t 0 -c 10 data_fileSolve SVM regression with linear kernel u'v and C=10, and epsilon = 0.1in the loss function.> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 500 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 500 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesLibrary Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		double degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩精品电影| 色婷婷精品大在线视频| 在线视频亚洲一区| 久久久www免费人成精品| 亚洲自拍偷拍欧美| 成人在线综合网| 日韩精品一区二区三区四区| 亚洲少妇最新在线视频| 国产一区久久久| 欧美人伦禁忌dvd放荡欲情| 中文字幕亚洲综合久久菠萝蜜| 日本不卡不码高清免费观看| 色综合色狠狠天天综合色| 国产三区在线成人av| 久久精品国产亚洲高清剧情介绍 | 韩国毛片一区二区三区| 欧美色网站导航| 亚洲三级在线免费观看| 国产a久久麻豆| 日韩一二三区视频| 午夜视频久久久久久| 欧洲一区在线观看| 一区二区三区丝袜| 色88888久久久久久影院按摩 | 欧美四级电影网| 综合久久给合久久狠狠狠97色| 国产一区二区三区久久悠悠色av| 91精品在线观看入口| 五月婷婷另类国产| 欧美午夜精品免费| 亚洲国产精品久久一线不卡| 在线观看免费亚洲| 亚洲综合久久久| 欧美综合视频在线观看| 日韩伦理电影网| 色欧美片视频在线观看| 综合久久给合久久狠狠狠97色| 99久久精品情趣| 亚洲美女少妇撒尿| 色哟哟国产精品免费观看| 一区二区三区精品| 欧洲av在线精品| 亚洲在线观看免费| 精品视频色一区| 午夜视频在线观看一区二区三区| 欧美日韩国产影片| 午夜精品久久久久久久99水蜜桃| 欧美日韩高清影院| 日韩综合小视频| 91精品国产91热久久久做人人| 日韩av高清在线观看| 日韩亚洲欧美一区二区三区| 蜜臀99久久精品久久久久久软件 | 99久久精品国产观看| **网站欧美大片在线观看| 99精品国产99久久久久久白柏 | 日韩欧美高清dvd碟片| 麻豆国产精品官网| 久久久www免费人成精品| 国产91在线观看| 亚洲天堂精品在线观看| 色丁香久综合在线久综合在线观看| 亚洲精品久久7777| 欧美日韩国产综合视频在线观看| 免费成人在线观看视频| 久久久久久久久久久黄色| 丁香另类激情小说| 一区二区三区在线播| 欧美区视频在线观看| 久久精品国产99国产精品| 久久久久久久性| 91麻豆免费看| 免费看日韩精品| 国产精品另类一区| 欧美在线观看视频一区二区| 日韩成人精品视频| 久久久电影一区二区三区| 一本久久综合亚洲鲁鲁五月天| 五月天激情综合网| 久久久久久久久蜜桃| 色爱区综合激月婷婷| 免费不卡在线观看| 国产精品美女久久久久久久久| 欧美这里有精品| 韩国一区二区视频| 一区二区三区在线不卡| 欧美v日韩v国产v| 97久久超碰国产精品电影| 日日夜夜精品视频天天综合网| 久久久久亚洲综合| 欧美色图片你懂的| 国产精品白丝jk黑袜喷水| 一区二区三区中文字幕电影| 精品免费视频一区二区| 91色porny| 加勒比av一区二区| 亚洲一线二线三线视频| 2017欧美狠狠色| 欧美三区在线观看| 国产精品88av| 亚洲午夜久久久久久久久电影院| 亚洲精品一线二线三线无人区| 91视视频在线观看入口直接观看www| 日韩成人精品视频| 亚洲精品福利视频网站| 欧美精品一区二区蜜臀亚洲| 在线国产亚洲欧美| 国产成人鲁色资源国产91色综 | 久久久久99精品国产片| 在线视频一区二区三区| 国产成人啪午夜精品网站男同| 日韩精品五月天| 日韩伦理av电影| 精品国产免费人成电影在线观看四季 | 亚洲卡通动漫在线| 精品对白一区国产伦| 欧美三日本三级三级在线播放| 成人久久久精品乱码一区二区三区| 日韩国产欧美在线观看| 亚洲人成网站在线| 久久久精品日韩欧美| 欧美一区二视频| 欧美中文字幕一区二区三区亚洲| 懂色中文一区二区在线播放| 麻豆成人久久精品二区三区小说| 夜夜嗨av一区二区三区四季av| 亚洲国产精品激情在线观看 | 色菇凉天天综合网| 成人a区在线观看| 国产乱色国产精品免费视频| 日韩中文字幕区一区有砖一区| 一区二区三区av电影| 国产精品大尺度| 中文一区一区三区高中清不卡| 精品少妇一区二区三区免费观看 | 日韩精品一区二区在线观看| 欧美午夜电影网| 色狠狠色狠狠综合| 91浏览器入口在线观看| 成人看片黄a免费看在线| 国产精品一级片| 国产一区二区三区| 狠狠色丁香婷婷综合| 美女精品自拍一二三四| 天天影视网天天综合色在线播放| 亚洲综合999| 亚洲一区二区视频| 亚洲乱码日产精品bd| 亚洲美女淫视频| 亚洲女同ⅹxx女同tv| 亚洲欧洲av一区二区三区久久| 国产精品丝袜久久久久久app| 国产色产综合色产在线视频| 久久久www成人免费无遮挡大片| 久久亚洲精品小早川怜子| 精品国产在天天线2019| 精品少妇一区二区三区在线播放| 欧美成人艳星乳罩| 欧美va亚洲va| 国产视频一区二区在线观看| 欧美韩日一区二区三区| 国产精品国产三级国产专播品爱网| 中文字幕免费一区| ...中文天堂在线一区| 亚洲人被黑人高潮完整版| 亚洲欧美另类图片小说| 一区二区高清在线| 亚洲成人激情社区| 人人狠狠综合久久亚洲| 男女男精品网站| 黑人巨大精品欧美黑白配亚洲| 国产ts人妖一区二区| 成人h动漫精品一区二区| 色天天综合久久久久综合片| 欧美在线一区二区| 日韩一区二区三区在线视频| 日韩三区在线观看| 久久免费精品国产久精品久久久久| 国产日韩欧美在线一区| 一区二区中文视频| 亚洲国产成人va在线观看天堂| 日韩电影免费在线看| 国产在线精品一区二区不卡了| 大美女一区二区三区| 在线视频综合导航| 欧美一区二区二区| 久久久精品综合| 一区二区在线观看av| 日本亚洲三级在线| 国产精品一区免费在线观看| 91美女蜜桃在线| 日韩亚洲欧美在线| 国产精品夫妻自拍| 亚洲超丰满肉感bbw| 国产一区二区在线视频| www.成人在线| 91精品国产综合久久精品app| 久久青草欧美一区二区三区| 亚洲男人的天堂av| 日本成人在线电影网|