亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 支撐向量機庫文件
??
?? 第 1 頁 / 共 2 頁
字號:
		double cache_size; /* in MB */		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation. (we usually use 1 to 1000)    eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels in the validation process are stored in the array called    target.- Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For all other situations, the array prob_estimates is    unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train(). It returns NULL if the parameters are feasible,     otherwise an error message is returned. - Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyWe have tried IBM's and Sun's JDK.You may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a dos command box and change to libsvm directory.  Ifenvironment variables of VC++ have not been set, type"C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat"You may have to modify the above according which version of VC++orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.dll to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm faq.Model Selection===============See the README file in python directory.Python Interface================See the README file in python directory.ADDITIONAL INFORMATION======================Chih-Chung Chang and Chih-Jen LinLIBSVM : a library for support vector machines.http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gzAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91色视频在线| 韩日精品视频一区| 日本sm残虐另类| 美女视频网站黄色亚洲| 国产精品一二三在| 日本丶国产丶欧美色综合| 91精品综合久久久久久| 精品三级在线观看| 亚洲黄色免费网站| 麻豆精品久久久| 不卡影院免费观看| 欧美日韩国产首页在线观看| 久久噜噜亚洲综合| 一区二区三区美女| 成人黄色小视频在线观看| 日本韩国欧美一区二区三区| 2020国产成人综合网| 亚洲欧美日韩成人高清在线一区| 日本欧美一区二区在线观看| 成人免费不卡视频| 精品欧美久久久| 亚洲国产日日夜夜| 色婷婷精品久久二区二区蜜臂av| 精品剧情在线观看| 日韩精品亚洲一区| 色婷婷久久久亚洲一区二区三区| 久久夜色精品一区| 日本vs亚洲vs韩国一区三区二区 | 91麻豆精品国产91久久久更新时间 | 久久午夜羞羞影院免费观看| 图片区小说区区亚洲影院| 99国产欧美久久久精品| 久久欧美中文字幕| 国产一区二区精品久久99| 国产欧美一区二区三区网站| 午夜精彩视频在线观看不卡| 欧美在线观看18| 亚洲精品va在线观看| 91视频观看视频| 伊人色综合久久天天人手人婷| yourporn久久国产精品| 国产精品丝袜久久久久久app| 丁香另类激情小说| 国产精品视频一区二区三区不卡| jlzzjlzz亚洲日本少妇| 一区二区三区 在线观看视频| 欧美三级三级三级爽爽爽| 日韩中文字幕区一区有砖一区| 欧美日韩高清一区二区不卡| 青椒成人免费视频| 欧美激情艳妇裸体舞| 欧洲一区二区av| 国产激情精品久久久第一区二区| 中文成人av在线| 欧美电影影音先锋| 成人午夜在线播放| 亚洲主播在线播放| 精品国产免费人成电影在线观看四季| 成人午夜精品一区二区三区| 亚洲成人黄色小说| 成人免费在线视频| 日韩精品中文字幕一区| 91在线porny国产在线看| 久久不见久久见免费视频7| 五月婷婷欧美视频| 欧美激情一区二区三区蜜桃视频| 欧美吻胸吃奶大尺度电影| 国产成人av电影| 国产在线视频一区二区三区| 亚洲成人动漫一区| 亚洲人亚洲人成电影网站色| 久久综合999| 日韩欧美一级二级| 欧美老年两性高潮| 欧美日韩综合不卡| 在线视频国内一区二区| 国产91在线观看| 国产精品一区二区黑丝| 国产在线视频精品一区| 久久国产精品无码网站| 蜜臀av一级做a爰片久久| 日韩精品福利网| 蜜桃传媒麻豆第一区在线观看| 亚洲成人1区2区| 视频一区欧美日韩| 五月天欧美精品| 天天色天天操综合| 视频一区二区中文字幕| 日一区二区三区| 国产麻豆精品95视频| 国产伦精品一区二区三区在线观看| 精品亚洲成a人在线观看| 国产一区二区视频在线| 大美女一区二区三区| 色诱亚洲精品久久久久久| 色婷婷av一区| 日韩午夜在线观看| 中文字幕精品在线不卡| 亚洲mv在线观看| 国产不卡视频在线播放| 欧美午夜电影在线播放| 久久蜜桃av一区二区天堂| 亚洲精品国产精华液| 久久国产精品色婷婷| 欧美在线你懂的| 国产亚洲欧美色| 午夜精品福利视频网站 | 91精品午夜视频| 中文一区二区在线观看| 午夜精品久久久久影视| 顶级嫩模精品视频在线看| 555夜色666亚洲国产免| 国产精品日日摸夜夜摸av| 国产精品乡下勾搭老头1| 欧美性猛交xxxx黑人交| 国产人久久人人人人爽| 免费在线观看成人| 91久久久免费一区二区| 国产日韩精品一区| 国产一区欧美一区| 日韩三级高清在线| 日韩1区2区3区| 欧美一区二区在线免费播放| 伊人婷婷欧美激情| 欧美综合天天夜夜久久| 樱桃国产成人精品视频| www.在线欧美| 国产精品美女www爽爽爽| 国产一区激情在线| 欧美精品一区二区三区蜜臀| 日本午夜精品视频在线观看| 精品视频在线看| 首页国产丝袜综合| 欧美卡1卡2卡| 久久99精品一区二区三区| 欧美疯狂性受xxxxx喷水图片| 亚洲一级片在线观看| 欧美日韩精品一区二区三区蜜桃 | 成人精品免费视频| 亚洲麻豆国产自偷在线| 成人精品一区二区三区四区| 亚洲黄色小说网站| 欧美一级片在线看| 国产精品69毛片高清亚洲| 亚洲视频小说图片| 欧美顶级少妇做爰| 国产99久久久国产精品潘金网站| 国产精品久线观看视频| 欧美日韩黄色一区二区| 日本视频免费一区| 欧美激情综合在线| 成人久久18免费网站麻豆 | 日韩欧美在线不卡| 国产激情一区二区三区四区| 亚洲国产cao| 青青草97国产精品免费观看 | 在线播放91灌醉迷j高跟美女 | 国产免费观看久久| 欧美色综合网站| 91丨九色丨尤物| 成人av网站在线观看免费| 久草在线在线精品观看| 亚洲国产精品久久久久婷婷884| 中文字幕精品—区二区四季| 精品粉嫩超白一线天av| 日韩一级二级三级精品视频| 69堂精品视频| 欧美日韩午夜在线视频| 色欧美日韩亚洲| 欧美日韩一级大片网址| 色94色欧美sute亚洲线路二 | 日本一不卡视频| 五月天中文字幕一区二区| 一区二区三区不卡视频在线观看| 最新国产成人在线观看| 欧美激情中文字幕一区二区| 国产精品国产三级国产普通话三级| 久久久久久久久蜜桃| 国产精品免费免费| 一区二区在线观看视频| 香蕉乱码成人久久天堂爱免费| 五月婷婷综合激情| 精品一区二区三区久久| 国产不卡视频在线播放| 在线观看免费成人| 精品精品国产高清a毛片牛牛| 久久精品亚洲精品国产欧美| 自拍偷拍欧美精品| 亚洲精品国产品国语在线app| 亚洲影视在线播放| 五月婷婷激情综合网| 国产很黄免费观看久久| 一本一本大道香蕉久在线精品| 精品视频全国免费看| 国产无一区二区| 亚洲成人av一区| 国产成人午夜视频| 欧美老人xxxx18| 亚洲精品视频免费观看| 国产一区 二区 三区一级|