亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 支撐向量機庫文件
??
字號:
Two things are provided in this directory: an automatic model selectiontool and a python binding for libsvm.		Part I: Model Selection ToolsIntroduction===============grid.py is a model selection tool for C-SVM classification using RBF(radial basis function) kernel. It uses cross validation (CV) techniqueto estimate the accuracy of each parameter combination in the specified range and helps you to decide the best parameters for your problem.grid.py directly executes libsvm binaries (so no python binding is needed)for cross validation and then draw contour of CV accuracy using gnuplot.You must have libsvm and gnuplot installed before using it. The package gnuplot is available at http://www.gnuplot.info/Usage: grid.py [-log2c begin,end,step] [-log2g begin,end,step] [-v fold]        [-svmtrain pathname] [-gnuplot pathname] [-out pathname] [-png pathname]         [additional parameters for svm-train] datasetThe program conducts v-fold cross validation using parameter C (and gamma) = 2^begin, 2^(begin+step), ..., 2^end. You can specify where the libsvm executable and gnuplot are using the-svmtrain and -gnuplot parameters.For windows users, please use pgnuplot.exe. If you are using gnuplot3.7.1, please upgrade to version 3.7.3. The version 3.7.1 has a bug.Example=======> python grid.py -log2c -5,5,1 -log2g -4,0,1 -v 5 -m 300 heart_scaleWindows users may also need to specify the path of the python executable.For example,> c:\python23\python.exe grid.py -log2c -5,5,1 -svmtrain c:\libsvm-2.6\windows\svmtrain.exe -gnuplot c:\gp373w32\pgnuplot.exe -v 10 heart_scaleOutput: two filesdataset.png: the contour plot of the CV accuracy (generated by gnuplot)dataset.out: the log of accuracy at each (C,gamma)Parallel grid search (experimental)===================================You can conduct a parallel grid search by dispatching jobs to a cluster of computers which share the same file system. First, you add machine names in grid.py:telnet_workers = ["linux1", "linux5", "linux5"]The same machine (e.g., linux5 here) can be listed more than once ifit has multiple CPUs or has more RAM. If the local machine is thebest, you can also enlarge the nr_local_worker. For example:nr_local_worker = 2Example:> python grid.py heart_scalePassword: ********login ok linux1login ok linux5login ok linux5...The password is the one used for entering your system. If -log2c, -log2g, or-v is not specified, default values are used. If your system uses ssh instead of telnet, you should setup ssh first so thatthe authentication works without asking a password, and list the computer namesin ssh_workers.		Part II: Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.3 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.19). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in thedirectory windows/python. You need to copy it to this directory.  Thedll file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲夂夂婷婷色拍ww47| 亚洲国产精品自拍| 日韩精品视频网| 不卡的av中国片| 26uuu国产在线精品一区二区| 亚洲伦理在线免费看| 国产一区二区三区在线看麻豆| 欧美体内she精高潮| 国产精品国产a| 国产一区二区三区四区五区美女| 8x8x8国产精品| 亚洲精选视频在线| 国产69精品久久99不卡| 欧美tk丨vk视频| 亚洲1区2区3区4区| 色94色欧美sute亚洲13| 国产精品免费视频观看| 国产一区二区三区最好精华液| 欧美一区二区三区视频| 亚洲曰韩产成在线| 99久久免费精品| 国产日韩欧美高清在线| 久久99精品久久久久婷婷| 欧美精品18+| 亚洲国产乱码最新视频 | 另类人妖一区二区av| 欧美视频一区二区三区| 一区二区三区日韩欧美| 99精品国产91久久久久久| 亚洲国产精品精华液ab| 国产精品一卡二| www成人在线观看| 黄色日韩网站视频| 亚洲精品一区二区在线观看| 久久精品国产亚洲a| 欧美成人伊人久久综合网| 日韩电影在线免费看| 日韩亚洲国产中文字幕欧美| 日韩影院精彩在线| 欧美一区二区三区色| 青青草97国产精品免费观看 | 精品久久久久久综合日本欧美| 日本免费在线视频不卡一不卡二| 欧美丰满美乳xxx高潮www| 爽爽淫人综合网网站| 6080日韩午夜伦伦午夜伦| 午夜精品福利久久久| 91精品在线麻豆| 麻豆成人综合网| 精品不卡在线视频| 国产成人在线视频网址| 国产精品乱人伦中文| 99久精品国产| 亚洲自拍偷拍欧美| 欧美猛男男办公室激情| 日韩国产欧美在线观看| 91麻豆精品国产自产在线观看一区 | 久久精品一区八戒影视| 久久av老司机精品网站导航| 2019国产精品| 国产成人av在线影院| 日韩一区欧美一区| 在线观看视频欧美| 天堂成人国产精品一区| 日韩一区二区电影| 国产精品一卡二| 亚洲桃色在线一区| 欧美在线短视频| 免费欧美高清视频| 久久九九久精品国产免费直播| 成人激情免费网站| 亚洲一级二级三级在线免费观看| 欧美一级视频精品观看| 国产乱对白刺激视频不卡| 亚洲视频在线一区| 欧美日韩国产高清一区二区| 久久超碰97中文字幕| 国产精品伦理在线| 欧美日韩精品综合在线| 久久av资源网| 亚洲欧美韩国综合色| 制服丝袜中文字幕一区| 国产精品一区二区在线观看不卡| 1区2区3区精品视频| 欧美精品一二三| 国产在线精品一区二区| 亚洲乱码国产乱码精品精可以看| 日韩一区二区精品| 99久久婷婷国产综合精品电影 | 久久久久久久av麻豆果冻| 97精品超碰一区二区三区| 日韩不卡一区二区三区| 国产精品黄色在线观看| 欧美久久久一区| 成人免费看片app下载| 亚洲国产日韩在线一区模特| 久久久午夜精品| 欧美性大战久久久久久久蜜臀| 国产乱子轮精品视频| 一区二区三区日韩欧美精品| xnxx国产精品| 精品视频一区二区三区免费| 国产 欧美在线| 午夜精品久久久久久久久久| 日本一区二区视频在线| 欧美日韩激情在线| 成人丝袜18视频在线观看| 日韩电影在线观看一区| 亚洲欧美激情在线| 国产三级久久久| 91精品中文字幕一区二区三区| 99麻豆久久久国产精品免费 | 国产福利一区二区三区在线视频| 亚洲一区二区在线免费看| 久久精品人人爽人人爽| 欧美精品v日韩精品v韩国精品v| 成人短视频下载| 精品一区二区三区的国产在线播放| 亚洲夂夂婷婷色拍ww47| 国产精品麻豆一区二区| 2021国产精品久久精品| 91精品国产乱| 欧美三级乱人伦电影| 99久久综合国产精品| 日本91福利区| www国产成人免费观看视频 深夜成人网| 开心九九激情九九欧美日韩精美视频电影 | 国产精品一区二区在线观看网站| 亚洲国产精品一区二区久久| 国产精品美女久久久久久| 日韩午夜在线观看| 91福利在线看| www.成人网.com| 国产在线一区二区综合免费视频| 视频在线在亚洲| 亚洲一区免费在线观看| 亚洲欧美影音先锋| 欧美激情在线观看视频免费| 精品久久国产老人久久综合| 欧美精品丝袜久久久中文字幕| 色先锋资源久久综合| 成人18视频在线播放| 福利一区二区在线| 国产老肥熟一区二区三区| 精品亚洲欧美一区| 黄色精品一二区| 精品一区二区免费| 久久99精品国产麻豆婷婷| 免费一级片91| 麻豆国产91在线播放| 久久精品国产免费| 久久狠狠亚洲综合| 久久精品99国产国产精| 麻豆精品视频在线| 麻豆精品视频在线观看免费| 麻豆精品国产91久久久久久| 免费在线视频一区| 免费观看一级特黄欧美大片| 日韩电影在线免费| 蜜桃久久av一区| 精品一区免费av| 国产精品一区一区| 国产jizzjizz一区二区| 高清在线不卡av| 成人精品视频一区| 91原创在线视频| 日本韩国一区二区三区视频| 欧美自拍偷拍午夜视频| 欧美猛男gaygay网站| 69久久夜色精品国产69蝌蚪网| 欧美电影在哪看比较好| 日韩午夜在线影院| 久久五月婷婷丁香社区| 欧美激情一区在线观看| 成人免费一区二区三区在线观看| 一区二区三区欧美久久| 偷窥少妇高潮呻吟av久久免费| 日韩专区欧美专区| 久久99精品一区二区三区| 国产精品亚洲а∨天堂免在线| 岛国精品一区二区| 91丨porny丨在线| 欧美日韩三级在线| 欧美一区二区三区婷婷月色| 精品国产第一区二区三区观看体验 | 成人午夜激情视频| 91日韩在线专区| 精品视频一区三区九区| 日韩欧美视频一区| 久久精品欧美日韩精品| 亚洲乱码国产乱码精品精可以看| 亚洲高清免费视频| 欧美日韩免费电影| 欧美成人一区二区| 欧美国产综合一区二区| 亚洲在线观看免费| 久久国产精品露脸对白| jlzzjlzz亚洲女人18| 欧美日韩欧美一区二区| 2021国产精品久久精品|