?? ch14.h
字號:
/************************************************
Expect bugs!
Please use and enjoy, and let me know of any bugs/mods/improvements
that you have found/implemented and I will fix/incorporate them into
this file. Thank Mr. Xushiliang once again.
hujinshan@2002.11.3
Airforce Engineering University
************************************************/
/***** #include "CH14.h" 多項式與連分式函數(shù)的計算*****/
#ifndef CH14_H_
#define CH14_H_
#include "stdlib.h"
#include "math.h"
#include "stdio.h"
#include "ch15.h"
//*******************************************************************
double nplyv(double a[],int n,double x);//一維多項式求值
void nplys(double a[],int n,double x[],int m,double p[]);//一維多項式多組求值
double nbply(double a[],int m,int n,double x,double y);//二維多項式求值
void ncply(double ar[],double ai[],int n,double x,double y,double* u,double* v);//復系數(shù)多項式求值
void npmul(double p[],int m,double q[],int n,double s[],int k);//多項式相乘
void npdiv(double p[],int m,double q[],int n,double s[],int k,double r[],int l);//多項式相除
void ncmul(double pr[],double pi[],int m,double qr[],
double qi[],int n,double sr[],double si[],int k);//復系數(shù)多項式相乘
void ncdiv(double pr[],double pi[],int m,double qr[],double qi[],int n,double sr[],
double si[],int k,double rr[],double ri[],int l);//復系數(shù)多項式相除
double nfpqv(double x[],double b[],int n,double t);//函數(shù)連分式的的計算
//*******************************************************************
double nplyv(double a[],int n,double x)
{
int i;
double u;
u=a[n-1];
for (i=n-2; i>=0; i--)
u=u*x+a[i];
return(u);
}
/////////////////////////////////////////////////////////////
void nplys(double a[],int n,double x[],int m,double p[])
{
int i,j,mm,nn,ll,t,s,kk,k;
double *b,y,z;
b=(double*)malloc(2*n*sizeof(double));
y=a[n-1];
for (i=0; i<=n-1; i++) b[i]=a[i]/y;
k=log(n-0.5)/log(2.0)+1;
nn=1;
for (i=0; i<=k-1; i++) nn=2*nn;
for (i=n; i<nn-1; i++) b[i]=0.0;
b[nn-1]=1.0;
t=nn; s=1;
for (i=1; i<=k-1; i++)
{ t=t/2; mm=-t;
for (j=1; j<=s; j++)
{ mm=mm+t+t; b[mm-1]=b[mm-1]-1.0;
for (kk=2; kk<=t; kk++)
b[mm-kk]=b[mm-kk]-b[mm-1]*b[mm+t-kk];
}
s=s+s;
}
for (kk=1; kk<=m; kk++)
{ for (i=0; i<=(nn-2)/2; i++)
a[i]=x[kk-1]+b[2*i];
mm=1; z=x[kk-1];
for (i=1; i<=k-1; i++)
{ mm=mm+mm; ll=mm+mm; z=z*z;
for (j=0; j<=nn-1; j=j+ll)
a[j/2]=a[j/2]+a[(j+mm)/2]*(z+b[j+mm-1]);
}
z=z*z/x[kk-1];
if (nn!=n) a[0]=a[0]-z;
p[kk-1]=a[0]*y;
}
return;
}
/////////////////////////////////////////////////////////////
double nbply(double a[],int m,int n,double x,double y)
{
int i,j;
double u,s,xx;
u=0.0; xx=1.0;
for (i=0; i<=m-1; i++)
{ s=a[i*n+n-1]*xx;
for (j=n-2; j>=0; j--)
s=s*y+a[i*n+j]*xx;
u=u+s; xx=xx*x;
}
return(u);
}
/////////////////////////////////////////////////////////////
void ncply(double ar[],double ai[],int n,double x,double y,double* u,double* v)
{
int i;
double p,q,s,t;
//extern void ocmul();
s=ar[n-1]; t=ai[n-1];
for (i=n-2; i>=0; i--)
{ ocmul(s,t,x,y,&p,&q);
s=p+ar[i]; t=q+ai[i];
}
*u=s; *v=t;
return;
}
/////////////////////////////////////////////////////////////
void npmul(double p[],int m,double q[],int n,double s[],int k)
{
int i,j;
for (i=0; i<=k-1; i++) s[i]=0.0;
for (i=0; i<=m-1; i++)
for (j=0; j<=n-1; j++)
s[i+j]=s[i+j]+p[i]*q[j];
return;
}
/////////////////////////////////////////////////////////////
void npdiv(double p[],int m,double q[],int n,double s[],int k,double r[],int l)
{
int i,j,mm,ll;
for (i=0; i<=k-1; i++) s[i]=0.0;
if (q[n-1]+1.0==1.0) return;
ll=m-1;
for (i=k; i>=1; i--)
{ s[i-1]=p[ll]/q[n-1];
mm=ll;
for (j=1; j<=n-1; j++)
{ p[mm-1]=p[mm-1]-s[i-1]*q[n-j-1];
mm=mm-1;
}
ll=ll-1;
}
for (i=0; i<=l-1; i++) r[i]=p[i];
return;
}
/////////////////////////////////////////////////////////////
void ncmul(double pr[],double pi[],int m,double qr[],double qi[],int n,double sr[],double si[],int k)
{
int i,j;
double a,b,c,d,u,v;
//extern void ocmul();
for (i=0; i<=k-1; i++)
{ sr[i]=0.0; si[i]=0.0; }
for (i=0; i<=m-1; i++)
for (j=0; j<=n-1; j++)
{ a=pr[i]; b=pi[i]; c=qr[j]; d=qi[j];
ocmul(a,b,c,d,&u,&v);
sr[i+j]=sr[i+j]+u;
si[i+j]=si[i+j]+v;
}
return;
}
/////////////////////////////////////////////////////////////
void ncdiv(double pr[],double pi[],int m,double qr[],double qi[],
int n,double sr[],double si[],int k,double rr[],double ri[],int l)
{
int i,j,mm,ll;
double a,b,c,d,u,v;
//extern void ocmul();
//extern void ocdiv();
for (i=0; i<=k-1; i++)
{ sr[i]=0.0; si[i]=0.0; }
d=qr[n-1]*qr[n-1]+qi[n-1]*qi[n-1];
if (d+1.0==1.0) return;
ll=m-1;
for (i=k; i>=1; i--)
{ a=pr[ll]; b=pi[ll]; c=qr[n-1]; d=qi[n-1];
ocdiv(a,b,c,d,&u,&v);
sr[i-1]=u; si[i-1]=v;
mm=ll;
for (j=1; j<=n-1; j++)
{ a=sr[i-1]; b=si[i-1];
c=qr[n-j-1]; d=qi[n-j-1];
ocmul(a,b,c,d,&u,&v);
pr[mm-1]=pr[mm-1]-u;
pi[mm-1]=pi[mm-1]-v;
mm=mm-1;
}
ll=ll-1;
}
for (i=0; i<=l-1; i++)
{ rr[i]=pr[i]; ri[i]=pi[i]; }
return;
}
/////////////////////////////////////////////////////////////
double nfpqv(double x[],double b[],int n,double t)
{
int k;
double u;
u=b[n-1];
for (k=n-2; k>=0; k--)
{ if (fabs(u)+1.0==1.0)
u=1.0e+35*(t-x[k])/fabs(t-x[k]);
else
u=b[k]+(t-x[k])/u;
}
return(u);
}
/////////////////////////////////////////////////////////////
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -