?? canny 算子.txt
字號:
#include <math.h>
#include <stdio.h>
#define MAX
#include "lib.h"
/* Scale floating point magnitudes and angles to 8 bits */
#define ORI_SCALE 40.0
#define MAG_SCALE 20.0
/* Biggest possible filter mask */
#define MAX_MASK_SIZE 20
/* Fraction of pixels that should be above the HIGH threshold */
float ratio = 0.1;
int WIDTH = 0;
int trace (int i, int j, int low, IMAGE im,IMAGE mag, IMAGE ori);
float gauss(float x, float sigma);
float dGauss (float x, float sigma);
float meanGauss (float x, float sigma);
void hysteresis (int high, int low, IMAGE im, IMAGE mag, IMAGE oriim);
void canny (float s, IMAGE im, IMAGE mag, IMAGE ori);
void seperable_convolution (IMAGE im, float *gau, int width,
float **smx, float **smy);
void dxy_seperable_convolution (float** im, int nr, int nc, float *gau,
int width, float **sm, int which);
void nonmax_suppress (float **dx, float **dy, int nr, int nc,
IMAGE mag, IMAGE ori);
void estimate_thresh (IMAGE mag, int *low, int *hi);
void main (int argc, char *argv[])
{
int i,j,k,n;
float s=1.0;
int low= 0,high=-1;
FILE *params;
IMAGE im, magim, oriim;
/* Command line: input file name */
if (argc < 2)
{
printf ("USAGE: canny <filename>\n");
printf ("Canny edge detector - reads a PGM format file and\n");
printf (" detects edges, creating 'canny.pgm'.\n");
exit (1);
}
printf ("CANNY: Apply the Canny edge detector to an image.\n");
/* Read parameters from the file canny.par */
params = fopen ("canny.par", "r");
if (params)
{
fscanf (params, "%d", &low); /* Lower threshold */
fscanf (params, "%d", &high); /* High threshold */
fscanf (params, "%f", &s); /* Gaussian standard deviation */
printf ("Parameters from canny.par: HIGH: %d LOW %d Sigma %f\n",
high, low, s);
fclose (params);
}
else printf ("Parameter file 'canny.par' does not exist.\n");
/* Read the input file */
im = Input_PBM (argv[1]);
if (im == 0)
{
printf ("No input image ('%s')\n", argv[1]);
exit (2);
}
/* Create local image space */
magim = newimage (im->info->nr, im->info->nc);
if (magim == NULL)
{
printf ("Out of storage: Magnitude\n");
exit (1);
}
oriim = newimage (im->info->nr, im->info->nc);
if (oriim == NULL)
{
printf ("Out of storage: Orientation\n");
exit (1);
}
/* Apply the filter */
canny (s, im, magim, oriim);
/* Hysteresis thresholding of edge pixels */
hysteresis (high, low, im, magim, oriim);
for (i=0; i<WIDTH; i++)
for (j=0; j<im->info->nc; j++)
im->data[i][j] = 255;
for (i=im->info->nr-1; i>im->info->nr-1-WIDTH; i--)
for (j=0; j<im->info->nc; j++)
im->data[i][j] = 255;
for (i=0; i<im->info->nr; i++)
for (j=0; j<WIDTH; j++)
im->data[i][j] = 255;
for (i=0; i<im->info->nr; i++)
for (j=im->info->nc-WIDTH-1; j<im->info->nc; j++)
im->data[i][j] = 255;
Output_PBM (im, "canny.pgm");
printf ("Output file is:\n");
printf (" canny.pgm - edge-only image\n");
}
float norm (float x, float y)
{
return (float) sqrt ( (double)(x*x + y*y) );
}
void canny (float s, IMAGE im, IMAGE mag, IMAGE ori)
{
int width;
float **smx,**smy;
float **dx,**dy;
int i,j,k,n;
float gau[MAX_MASK_SIZE], dgau[MAX_MASK_SIZE], z;
/* Create a Gaussian and a derivative of Gaussian filter mask */
for(i=0; i<MAX_MASK_SIZE; i++)
{
gau[i] = meanGauss ((float)i, s);
if (gau[i] < 0.005)
{
width = i;
break;
}
dgau[i] = dGauss ((float)i, s);
}
n = width+width + 1;
WIDTH = width/2;
printf ("Smoothing with a Gaussian (width = %d) ...\n", n);
smx = f2d (im->info->nr, im->info->nc);
smy = f2d (im->info->nr, im->info->nc);
/* Convolution of source image with a Gaussian in X and Y directions */
seperable_convolution (im, gau, width, smx, smy);
/* Now convolve smoothed data with a derivative */
printf ("Convolution with the derivative of a Gaussian...\n");
dx = f2d (im->info->nr, im->info->nc);
dxy_seperable_convolution (smx, im->info->nr, im->info->nc,
dgau, width, dx, 1);
free(smx[0]); free(smx);
dy = f2d (im->info->nr, im->info->nc);
dxy_seperable_convolution (smy, im->info->nr, im->info->nc,
dgau, width, dy, 0);
free(smy[0]); free(smy);
/* Create an image of the norm of dx,dy */
for (i=0; i<im->info->nr; i++)
for (j=0; j<im->info->nc; j++)
{
z = norm (dx[i][j], dy[i][j]);
mag->data[i][j] = (unsigned char)(z*MAG_SCALE);
}
/* Non-maximum suppression - edge pixels should be a local max */
nonmax_suppress (dx, dy, (int)im->info->nr, (int)im->info->nc, mag, ori);
free(dx[0]); free(dx);
free(dy[0]); free(dy);
}
/* Gaussian */
float gauss(float x, float sigma)
{
float xx;
if (sigma == 0) return 0.0;
xx = (float)exp((double) ((-x*x)/(2*sigma*sigma)));
return xx;
}
float meanGauss (float x, float sigma)
{
float z;
z = (gauss(x,sigma)+gauss(x+0.5,sigma)+gauss(x-0.5,sigma))/3.0;
z = z/(PI*2.0*sigma*sigma);
return z;
}
/* First derivative of Gaussian */
float dGauss (float x, float sigma)
{
return -x/(sigma*sigma) * gauss(x, sigma);
}
/* HYSTERESIS thersholding of edge pixels. Starting at pixels with a
value greater than the HIGH threshold, trace a connected sequence
of pixels that have a value greater than the LOW threhsold. */
void hysteresis (int high, int low, IMAGE im, IMAGE mag, IMAGE oriim)
{
int i,j,k;
printf ("Beginning hysteresis thresholding...\n");
for (i=0; i<im->info->nr; i++)
for (j=0; j<im->info->nc; j++)
im->data[i][j] = 0;
if (high<low)
{
estimate_thresh (mag, &high, &low);
printf ("Hysteresis thresholds (from image): HI %d LOW %D\n",
high, low);
}
/* For each edge with a magnitude above the high threshold, begin
tracing edge pixels that are above the low threshold. */
for (i=0; i<im->info->nr; i++)
for (j=0; j<im->info->nc; j++)
if (mag->data[i][j] >= high)
trace (i, j, low, im, mag, oriim);
/* Make the edge black (to be the same as the other methods) */
for (i=0; i<im->info->nr; i++)
for (j=0; j<im->info->nc; j++)
if (im->data[i][j] == 0) im->data[i][j] = 255;
else im->data[i][j] = 0;
}
/* TRACE - recursively trace edge pixels that have a threshold > the low
edge threshold, continuing from the pixel at (i,j). */
int trace (int i, int j, int low, IMAGE im,IMAGE mag, IMAGE ori)
{
int n,m;
char flag = 0;
if (im->data[i][j] == 0)
{
im->data[i][j] = 255;
flag=0;
for (n= -1; n<=1; n++)
{
for(m= -1; m<=1; m++)
{
if (i==0 && m==0) continue;
if (range(mag, i+n, j+m) && mag->data[i+n][j+m] >= low)
if (trace(i+n, j+m, low, im, mag, ori))
{
flag=1;
break;
}
}
if (flag) break;
}
return(1);
}
return(0);
}
void seperable_convolution (IMAGE im, float *gau, int width,
float **smx, float **smy)
{
int i,j,k, I1, I2, nr, nc;
float x, y;
nr = im->info->nr;
nc = im->info->nc;
for (i=0; i<nr; i++)
for (j=0; j<nc; j++)
{
x = gau[0] * im->data[i][j]; y = gau[0] * im->data[i][j];
for (k=1; k<width; k++)
{
I1 = (i+k)%nr; I2 = (i-k+nr)%nr;
y += gau[k]*im->data[I1][j] + gau[k]*im->data[I2][j];
I1 = (j+k)%nc; I2 = (j-k+nc)%nc;
x += gau[k]*im->data[i][I1] + gau[k]*im->data[i][I2];
}
smx[i][j] = x; smy[i][j] = y;
}
}
void dxy_seperable_convolution (float** im, int nr, int nc, float *gau,
int width, float **sm, int which)
{
int i,j,k, I1, I2;
float x;
for (i=0; i<nr; i++)
for (j=0; j<nc; j++)
{
x = 0.0;
for (k=1; k<width; k++)
{
if (which == 0)
{
I1 = (i+k)%nr; I2 = (i-k+nr)%nr;
x += -gau[k]*im[I1][j] + gau[k]*im[I2][j];
}
else
{
I1 = (j+k)%nc; I2 = (j-k+nc)%nc;
x += -gau[k]*im[i][I1] + gau[k]*im[i][I2];
}
}
sm[i][j] = x;
}
}
void nonmax_suppress (float **dx, float **dy, int nr, int nc,
IMAGE mag, IMAGE ori)
{
int i,j,k,n,m;
int top, bottom, left, right;
float xx, yy, g2, g1, g3, g4, g, xc, yc;
for (i=1; i<mag->info->nr-1; i++)
{
for (j=1; j<mag->info->nc-1; j++)
{
mag->data[i][j] = 0;
/* Treat the x and y derivatives as components of a vector */
xc = dx[i][j];
yc = dy[i][j];
if (fabs(xc)<0.01 && fabs(yc)<0.01) continue;
g = norm (xc, yc);
/* Follow the gradient direction, as indicated by the direction of
the vector (xc, yc); retain pixels that are a local maximum. */
if (fabs(yc) > fabs(xc))
{
/* The Y component is biggest, so gradient direction is basically UP/DOWN */
xx = fabs(xc)/fabs(yc);
yy = 1.0;
g2 = norm (dx[i-1][j], dy[i-1][j]);
g4 = norm (dx[i+1][j], dy[i+1][j]);
if (xc*yc > 0.0)
{
g3 = norm (dx[i+1][j+1], dy[i+1][j+1]);
g1 = norm (dx[i-1][j-1], dy[i-1][j-1]);
} else
{
g3 = norm (dx[i+1][j-1], dy[i+1][j-1]);
g1 = norm (dx[i-1][j+1], dy[i-1][j+1]);
}
} else
{
/* The X component is biggest, so gradient direction is basically LEFT/RIGHT */
xx = fabs(yc)/fabs(xc);
yy = 1.0;
g2 = norm (dx[i][j+1], dy[i][j+1]);
g4 = norm (dx[i][j-1], dy[i][j-1]);
if (xc*yc > 0.0)
{
g3 = norm (dx[i-1][j-1], dy[i-1][j-1]);
g1 = norm (dx[i+1][j+1], dy[i+1][j+1]);
}
else
{
g1 = norm (dx[i-1][j+1], dy[i-1][j+1]);
g3 = norm (dx[i+1][j-1], dy[i+1][j-1]);
}
}
/* Compute the interpolated value of the gradient magnitude */
if ( (g > (xx*g1 + (yy-xx)*g2)) &&
(g > (xx*g3 + (yy-xx)*g4)) )
{
if (g*MAG_SCALE <= 255)
mag->data[i][j] = (unsigned char)(g*MAG_SCALE);
else
mag->data[i][j] = 255;
ori->data[i][j] = atan2 (yc, xc) * ORI_SCALE;
} else
{
mag->data[i][j] = 0;
ori->data[i][j] = 0;
}
}
}
}
void estimate_thresh (IMAGE mag, int *hi, int *low)
{
int i,j,k, hist[256], count;
/* Build a histogram of the magnitude image. */
for (k=0; k<256; k++) hist[k] = 0;
for (i=WIDTH; i<mag->info->nr-WIDTH; i++)
for (j=WIDTH; j<mag->info->nc-WIDTH; j++)
hist[mag->data[i][j]]++;
/* The high threshold should be > 80 or 90% of the pixels
j = (int)(ratio*mag->info->nr*mag->info->nc);
*/
j = mag->info->nr;
if (j<mag->info->nc) j = mag->info->nc;
j = (int)(0.9*j);
k = 255;
count = hist[255];
while (count < j)
{
k--;
if (k<0) break;
count += hist[k];
}
*hi = k;
i=0;
while (hist[i]==0) i++;
*low = (*hi+i)/2.0;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -