亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? forecaster.java

?? 搞算法預測的可以來看。有移動平均法
?? JAVA
字號:
////  OpenForecast - open source, general-purpose forecasting package.//  Copyright (C) 2002-2004  Steven R. Gould////  This library is free software; you can redistribute it and/or//  modify it under the terms of the GNU Lesser General Public//  License as published by the Free Software Foundation; either//  version 2.1 of the License, or (at your option) any later version.////  This library is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU//  Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with this library; if not, write to the Free Software//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//package net.sourceforge.openforecast;import java.util.ArrayList;import java.util.Iterator;import net.sourceforge.openforecast.models.MovingAverageModel;import net.sourceforge.openforecast.models.MultipleLinearRegressionModel;import net.sourceforge.openforecast.models.PolynomialRegressionModel;import net.sourceforge.openforecast.models.RegressionModel;import net.sourceforge.openforecast.models.SimpleExponentialSmoothingModel;import net.sourceforge.openforecast.models.DoubleExponentialSmoothingModel;import net.sourceforge.openforecast.models.TripleExponentialSmoothingModel;/** * The Forecaster class is a factory class that obtains the best * ForecastingModel for the given data set. The best forecasting model is * defined as the one that gives the lowest sum of absolute errors (SAE) * when reapplying the model to the historical or observed data. * @author Steven R. Gould */public class Forecaster{    /**     * Make constructor private to prevent this class from being instantiated     * directly.     */    private Forecaster()    {    }        /**     * Obtains the best forecasting model for the given DataSet. There is     * some intelligence built into this method to help it determine which     * forecasting model is best suited to the data. In particular, it will     * try applying various forecasting models, using different combinations     * of independent variables and select the one with the least Sum of     * Absolute Errors (SAE); i.e. the most accurate one based on historical     * data.     * @param dataSet a set of observations on which the given model should be     *        based.     * @return the best ForecastingModel for the given data set.     */    public static ForecastingModel getBestForecast( DataSet dataSet )    {        String independentVariable[] = dataSet.getIndependentVariables();        ForecastingModel bestModel = null;        String bestRegressionVariable = null;                        // Try single variable models        for ( int i=0; i<independentVariable.length; i++ )            {                ForecastingModel model;                                // Try the Regression Model                model = new RegressionModel( independentVariable[i] );                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    {                        bestModel = model;                        bestRegressionVariable = independentVariable[i];                    }                                // Try the Polynomial Regression Model                // Note: if order is about the same as dataSet.size() then                //  we'll get a good/great fit, but highly variable forecasts                int order = 10;                if ( dataSet.size()/2 < order )                    order = dataSet.size()/2;                model = new PolynomialRegressionModel( independentVariable[i],                                                       order );                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    bestModel = model;            }                        // Try multiple variable models                // Create a list of available variables        ArrayList availableVariables            = new ArrayList(independentVariable.length);        for ( int i=0; i<independentVariable.length; i++ )            availableVariables.add( independentVariable[i] );                // Create a list of variables to use - initially empty        ArrayList bestVariables = new ArrayList(independentVariable.length);                // While some variables still available to consider        while ( availableVariables.size() > 0 )            {                int count = bestVariables.size();                String workingList[] = new String[count+1];                if ( count > 0 )                    for ( int i=0; i<count; i++ )                        workingList[i] = (String)bestVariables.get(i);                                String bestAvailVariable = null;                                // For each available variable                Iterator it = availableVariables.iterator();                while ( it.hasNext() )                    {                        // Get current variable                        String currentVar = (String)it.next();                                                // Add variable to list to use for regression                        workingList[count] = currentVar;                                                // Do multiple variable linear regression                        ForecastingModel model                            = new MultipleLinearRegressionModel( workingList );                        model.init( dataSet );                                                //  If best so far, then save best variable                        if ( betterThan( model, bestModel ) )                            {                                bestModel = model;                                bestAvailVariable = currentVar;                            }                                                // Remove the current variable from the working list                        workingList[count] = null;                    }                                // If no better model could be found (by adding another                //     variable), then we're done                if ( bestAvailVariable == null )                    break;                                // Remove best variable from list of available vars                int bestVarIndex = availableVariables.indexOf( bestAvailVariable );                availableVariables.remove( bestVarIndex );                                // Add best variable to list of vars. to use                bestVariables.add( count, bestAvailVariable );                                count++;            }                        // Try time-series models        if ( dataSet.getTimeVariable() != null )            {                String timeVariable = dataSet.getTimeVariable();                                // Try moving average model                ForecastingModel model = new MovingAverageModel();                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try moving average model using periods per year if avail.                if ( dataSet.getPeriodsPerYear() > 0 )                    {                        model = new MovingAverageModel( dataSet.getPeriodsPerYear() );                        model.init( dataSet );                        if ( betterThan( model, bestModel ) )                            bestModel = model;                    }                                // TODO: Vary the period and try other MA models                // TODO: Consider appropriate use of time period in this                                // Try the best fit simple exponential smoothing model                model = SimpleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try the best fit double exponential smoothing model                model = DoubleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try the best fit triple exponential smoothing model                model = TripleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                            }                return bestModel;    }        /**     * A helper method to determine, based on the existing accuracy indicators,     * whether one model is "better than" a second model. This is done using     * the accuracy indicators exposed by each model, as defined in the     * ForecastingModel interface.     *     * <p>Generally, model2 should be the model that you expect to be worse. It     * can also be <code>null</code> if no model2 has been selected. model1     * cannot be <code>null</code>. If model2 is <code>null</code>, then     * betterThan will return true on the assumption that some model, any     * model, is better than no model.     *     * <p>The determination of which model is "best" is definitely subjective     * when the two models are close. The approach implemented here is to     * consider all current accuracy indicators (which admittedly are not     * independent of each other), and if more indicators are in favor of one     * model, then betterThan will return true.     *     * <p>It is expected that this implementation may change over time, so do     * not depend on the approach described here. Rather just consider that     * this method will implement a reasonable comparison of two models.     * @param model1 the first model to compare.     * @param model2 the second model to compare. If model1 is determined to     *        be "better than" model2, then true is returned. model2 can be     *        <code>null</code> representing the absence of a model.     * @return true if model1 is "better than" model2; otherwise false.     */    private static boolean betterThan( ForecastingModel model1, ForecastingModel model2 )    {        // Special case. Any model is better than no model!        if ( model2 == null )            return true;                double tolerance = 0.00000001;        int score = 0;        if ( model1.getBias()-model2.getBias() <= tolerance )            score++;        else if ( model1.getBias()-model2.getBias() >= tolerance )            score--;                if ( model1.getMAD()-model2.getMAD() <= tolerance )            score++;        else if ( model1.getMAD()-model2.getMAD() >= tolerance )            score--;                if ( model1.getMAPE()-model2.getMAPE() <= tolerance )            score++;        else if ( model1.getMAPE()-model2.getMAPE() >= tolerance )            score--;                if ( model1.getMSE()-model2.getMSE() <= tolerance )            score++;        else if ( model1.getMSE()-model2.getMSE() >= tolerance )            score--;                if ( model1.getSAE()-model2.getSAE() <= tolerance )            score++;        else if ( model1.getSAE()-model2.getSAE() >= tolerance )            score--;                if ( score == 0 )            {                // At this point, we're still unsure which one is best                //  so we'll take another approach                double diff = model1.getBias() - model2.getBias()                    + model1.getMAD()  - model2.getMAD()                    + model1.getMAPE() - model2.getMAPE()                    + model1.getMSE()  - model2.getMSE()                    + model1.getSAE()  - model2.getSAE();                return ( diff < 0 );            }                return ( score > 0 );    }}// Local Variables:// tab-width: 4// End:

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区二区三区视频在线观看| 老司机精品视频导航| 成人成人成人在线视频| 欧美极品aⅴ影院| 成人高清伦理免费影院在线观看| 国产精品色一区二区三区| 成人av在线电影| 亚洲激情自拍偷拍| 欧美日韩免费观看一区三区| 五月天欧美精品| www国产精品av| youjizz久久| 亚洲国产aⅴ成人精品无吗| 欧美久久一区二区| 国产一区二区电影| 亚洲欧美色图小说| 日韩午夜精品电影| 成人性生交大片免费看在线播放| 亚洲天堂久久久久久久| 欧美日韩精品是欧美日韩精品| 水蜜桃久久夜色精品一区的特点| 欧美成人激情免费网| 波多野结衣在线aⅴ中文字幕不卡| 亚洲美女淫视频| 日韩亚洲欧美高清| av成人老司机| 日韩av午夜在线观看| 久久亚洲影视婷婷| 欧美在线看片a免费观看| 久久99国内精品| 综合自拍亚洲综合图不卡区| 555www色欧美视频| 成人av在线影院| 免费国产亚洲视频| 亚洲视频香蕉人妖| 久久久一区二区三区捆绑**| 91福利精品第一导航| 国产美女精品在线| 五月激情综合网| 国产精品私人影院| 欧美成人免费网站| 欧美日韩中文字幕一区二区| 国产一区二区不卡在线| 日韩高清一区在线| 亚洲欧美一区二区三区极速播放| 欧美tk丨vk视频| 欧美优质美女网站| 成人爽a毛片一区二区免费| 天堂va蜜桃一区二区三区| 国产精品久久二区二区| 久久夜色精品一区| 日韩一区二区电影| 欧美吻胸吃奶大尺度电影 | 久久国产精品72免费观看| 亚洲欧洲综合另类| 国产精品久99| 久久色在线观看| 日韩一级二级三级| 欧美视频精品在线| 欧美自拍丝袜亚洲| 91在线一区二区三区| 国产**成人网毛片九色 | 国产在线视频一区二区| 亚洲电影一区二区| 亚洲精品综合在线| 国产精品美女久久久久久久久| 欧美一区二区三区不卡| 欧美午夜精品久久久久久超碰| 99re这里都是精品| av中文字幕一区| 99久久久国产精品| 成人激情午夜影院| eeuss国产一区二区三区| 51精品秘密在线观看| 欧美色视频一区| 色菇凉天天综合网| 欧美亚洲动漫精品| 欧美日韩免费电影| 欧美精品在线一区二区三区| 欧美高清视频在线高清观看mv色露露十八| 日本乱码高清不卡字幕| 在线观看国产91| 欧美丰满少妇xxxxx高潮对白| 欧美日韩国产高清一区二区三区 | 亚洲国产精品久久人人爱蜜臀| 亚洲色图第一区| 亚洲久草在线视频| 亚洲一级二级三级| 肉丝袜脚交视频一区二区| 日韩精彩视频在线观看| 久久99精品国产.久久久久| 久久成人久久鬼色| 国产麻豆视频精品| 成人亚洲一区二区一| 一本色道久久综合亚洲aⅴ蜜桃| 欧亚一区二区三区| 欧美卡1卡2卡| 久久综合久久99| 椎名由奈av一区二区三区| 亚洲国产一区二区在线播放| 日av在线不卡| 国产成人午夜精品影院观看视频| www.欧美精品一二区| 在线亚洲免费视频| 欧美一区二区三区在线看| 精品欧美乱码久久久久久| 国产精品色呦呦| 亚洲h动漫在线| 黄页视频在线91| 91在线播放网址| 亚洲五码中文字幕| 久久精品国产秦先生| 成人av在线播放网址| 在线观看精品一区| 久久综合中文字幕| 亚洲一区二区三区四区在线观看 | 国产精品99久久久久久久vr| 99久久99久久精品免费观看 | 国产精品成人在线观看| 亚洲综合另类小说| 韩国女主播一区| 欧洲在线/亚洲| www国产精品av| 亚洲综合免费观看高清完整版| 精品一区二区三区影院在线午夜| 成人av影视在线观看| 7777精品伊人久久久大香线蕉 | 亚洲视频免费看| 精品一区二区三区免费观看 | 精品国产三级电影在线观看| 亚洲激情图片qvod| 精品国产一区二区在线观看| 国产精品欧美精品| 人禽交欧美网站| 色偷偷久久人人79超碰人人澡| 欧美电视剧免费观看| 亚洲欧美日韩一区二区 | 精品日韩成人av| 欧美精品一区二区三区四区| 国产精品欧美一级免费| 美洲天堂一区二卡三卡四卡视频| 国产精品一区一区三区| 欧美精品久久天天躁| 久久久久久久久久久久久久久99| 欧美成人艳星乳罩| 亚洲欧洲国产专区| 亚洲一区二区综合| 久久国产精品第一页| 欧美视频在线一区二区三区| 91免费版pro下载短视频| 精品美女一区二区| 日韩黄色免费电影| 欧美亚男人的天堂| 一区二区三区中文字幕| 成人小视频在线| 国产亚洲午夜高清国产拍精品| 日韩高清欧美激情| 欧美精品一二三区| 亚洲6080在线| 欧美日韩综合不卡| 亚洲午夜久久久久久久久电影院 | 肉丝袜脚交视频一区二区| 日本二三区不卡| 亚洲欧美福利一区二区| av亚洲精华国产精华| 综合亚洲深深色噜噜狠狠网站| 成人午夜伦理影院| 国产精品天干天干在观线| 成人亚洲精品久久久久软件| 亚洲国产成人自拍| 成人综合婷婷国产精品久久蜜臀| 国产欧美一区二区精品婷婷| 国产精品一区二区x88av| 久久久精品综合| 国产精品99久久久久久久vr| 亚洲国产精品t66y| 99久久精品免费看国产免费软件| 国产精品国产三级国产三级人妇 | 久久亚洲欧美国产精品乐播| 国产九色精品成人porny| 2022国产精品视频| 国产伦理精品不卡| 国产日韩欧美精品电影三级在线| 国产成人啪午夜精品网站男同| 中文久久乱码一区二区| 不卡av在线免费观看| 尤物在线观看一区| 欧美精品电影在线播放| 看电视剧不卡顿的网站| 久久久青草青青国产亚洲免观| 国产精品白丝jk黑袜喷水| 中文字幕视频一区| 欧美三级电影在线观看| 青青草国产精品亚洲专区无| 精品88久久久久88久久久| www.亚洲国产| 亚洲一二三级电影| 精品88久久久久88久久久| 99国产精品久久久久| 日韩精品久久久久久|