亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? polynomialregressionmodel.java

?? 搞算法預(yù)測(cè)的可以來(lái)看。有移動(dòng)平均法
?? JAVA
字號(hào):
////  OpenForecast - open source, general-purpose forecasting package.//  Copyright (C) 2002-2004  Steven R. Gould////  This library is free software; you can redistribute it and/or//  modify it under the terms of the GNU Lesser General Public//  License as published by the Free Software Foundation; either//  version 2.1 of the License, or (at your option) any later version.////  This library is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU//  Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with this library; if not, write to the Free Software//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//package net.sourceforge.openforecast.models;import java.util.Iterator;import net.sourceforge.openforecast.ForecastingModel;import net.sourceforge.openforecast.DataPoint;import net.sourceforge.openforecast.DataSet;/** * Implements a single variable polynomial regression model using the variable * named in the constructor as the independent variable. The cofficients of * the regression as well as the accuracy indicators are determined from the * data set passed to init. * * <p>Once initialized, this model can be applied to another data set using * the forecast method to forecast values of the dependent variable based on * values of the dependent variable (the one named in the constructor). * * <p>A single variable polynomial regression model essentially attempts to * put a polynomial line - a curve if you prefer - through the data points. * Mathematically, assuming the independent variable is x and the dependent * variable is y, then this line can be represented as: * * <pre>y = a<sub>0</sub> + a<sub>1</sub>*x + a<sub>2</sub>*x<sup>2</sup> + a<sub>3</sub>*x<sup>3</sup> + ... + a<sub>m</sub>*x<sup>m</sup></pre> * * You can specify the order of the polynomial fit (the value of * <code>m</code> in the above equation) in the constructor. * @author Steven R. Gould */public class PolynomialRegressionModel extends AbstractForecastingModel{	/**	 * The name of the independent variable used in this regression model.	 */	private String independentVariable;	/**	 * The order of the polynomial to fit in this regression model.	 */	private int order = 0;	/**	 * An array of coefficients for this polynomial regression model. These are	 * initialized following a call to init.	 */	private double coefficient[];	/**	 * Constructs a new polynomial regression model, using the given name as	 * the independent variable. For a valid model to be constructed, you	 * should call init and pass in a data set containing a series of data	 * points involving the given independent variable.	 *	 * <p>Using this constructor the order of the polynomial fit is not	 * specified. The effect is that the model will try to determine an	 * appropriate order for the given data. It will do this by calculating	 * up to 10 coefficients and once the coefficients become numerically	 * insignificant they will be excluded from the model.	 * @param independentVariable the name of the independent variable to use	 * in this model.	 */	public PolynomialRegressionModel( String independentVariable )	{		this( independentVariable, 10 );	}	/**	 * Constructs a new linear regression model, using the given name as the	 * independent variable. For a valid model to be constructed, you should	 * call init and pass in a data set containing a series of data points	 * involving the given independent variable.	 * @param independentVariable the name of the independent variable to use	 * in this model.	 * @param order the required order of the polynomial to fit.	 */	public PolynomialRegressionModel( String independentVariable, int order )	{		this.independentVariable = independentVariable;		this.order = order;	}	/**	 * Initializes the coefficients to use for this regression model. The	 * intercept and slope are derived so as to give the best fit line for the	 * given data set.	 *	 * <p>Additionally, the accuracy indicators are calculated based on this	 * data set.	 * @param dataSet the set of observations to use to derive the regression	 * coefficients for this model.	 */	public void init( DataSet dataSet )	{		double a[][] = new double[order][order+1];		int n = dataSet.size();		for ( int i=0; i<order; i++ )			{				for ( int j=0; j<order; j++ )					{						int k = i + j;						Iterator it = dataSet.iterator();						while ( it.hasNext() )							{							DataPoint dp = (DataPoint)it.next();														double x = dp.getIndependentValue( independentVariable );							double y = dp.getDependentValue();														a[i][j] = a[i][j] + Math.pow(x,k);							}					}				Iterator it = dataSet.iterator();				while ( it.hasNext() )					{						DataPoint dp = (DataPoint)it.next();												double x = dp.getIndependentValue( independentVariable );						double y = dp.getDependentValue();												a[i][order] += y*Math.pow(x,i);					}			}		coefficient = Utils.GaussElimination( order, a );		// Calculate the accuracy indicators		calculateAccuracyIndicators( dataSet );	}	/**	 * Using the current model parameters (initialized in init), apply the	 * forecast model to the given data point. The data point must have valid	 * values for the independent variables. Upon return, the value of the	 * dependent variable will be updated with the forecast value computed for	 * that data point.	 * @param dataPoint the data point for which a forecast value (for the	 *        dependent variable) is required.	 * @return the same data point passed in but with the dependent value	 *         updated to contain the new forecast value.	 * @throws ModelNotInitializedException if forecast is called before the	 *         model has been initialized with a call to init.	 */	public double forecast( DataPoint dataPoint )	{		if ( !initialized )			throw new ModelNotInitializedException();		double x = dataPoint.getIndependentValue( independentVariable );		double forecastValue = 0.0;		for ( int i=0; i<order; i++ )			forecastValue += coefficient[i] * Math.pow(x,i);		dataPoint.setDependentValue( forecastValue );		return forecastValue;	}	/**	 * Returns a short name for this type of forecasting model. A more detailed	 * explanation is provided by the toString method.	 * @return a short string describing this type of forecasting model.	 */	public String getForecastType()	{		return "Single variable polynomial regression";	}	/**	 * Returns a detailed description of this forcasting model, including the	 * intercept and slope. A shortened version of this is provided by the	 * getForecastType method.	 * @return a description of this forecasting model.	 */	public String toString()	{		String description = "Single variable polynomial regression model";		if ( !initialized )			return description + " (uninitialized)";		description += " with an equation of: y = "+coefficient[0];		for ( int i=1; i<coefficient.length; i++ )			 if ( Math.abs(coefficient[i]) > 0.001 )				  description += (coefficient[i]<0 ? "" : "+")						+ coefficient[i] + "*"						+ independentVariable + (i>1 ? "^"+i : "" );		return description;	}}

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品国产凹凸成av人网站| 欧美一区二区三区在线观看| 亚洲成人免费观看| 国产亚洲福利社区一区| 欧美老肥妇做.爰bbww视频| 成人午夜在线播放| 美女在线观看视频一区二区| 亚洲伦理在线精品| 欧美激情自拍偷拍| 日韩欧美成人激情| 欧美日韩一区二区不卡| 色综合中文字幕国产 | 欧美高清你懂得| 欧美精彩视频一区二区三区| 欧美怡红院视频| 国产露脸91国语对白| 一区二区三区在线观看动漫 | 欧美女孩性生活视频| 韩国理伦片一区二区三区在线播放| 亚洲视频一区在线| 日韩精品一区二区三区视频播放| 色综合网色综合| 国产一区二区三区免费看| 亚洲一区二区三区视频在线| 国产欧美一区二区精品婷婷| 欧美一区2区视频在线观看| 色综合天天综合色综合av| 国产一区福利在线| 日韩综合小视频| 亚洲视频精选在线| 国产视频不卡一区| 日韩精品中午字幕| 欧美日韩精品久久久| 一区二区三区在线高清| 亚洲欧美另类小说| 精品免费一区二区三区| 色婷婷av一区| 成人性生交大合| 狠狠色综合日日| 三级欧美韩日大片在线看| 亚洲日本va午夜在线电影| 国产女主播在线一区二区| 日韩三级视频在线观看| 欧美高清视频在线高清观看mv色露露十八 | 国产精品77777| 美国十次了思思久久精品导航| 亚洲成人av福利| 亚洲精品成人精品456| 国产农村妇女毛片精品久久麻豆| 26uuu久久综合| 久久综合色综合88| 欧美岛国在线观看| 欧美成人高清电影在线| 精品国产第一区二区三区观看体验 | 国产精品私人影院| 欧美国产精品v| 国产女主播视频一区二区| 丁香另类激情小说| 成人爱爱电影网址| 亚洲欧洲综合另类| 日韩精品一级中文字幕精品视频免费观看 | 婷婷综合另类小说色区| 国产精品九色蝌蚪自拍| 欧美xxx久久| 国内外成人在线视频| 久久精品免费看| 精品一区二区三区免费毛片爱| 久久国产精品99久久久久久老狼| 精品一区二区在线视频| 国内欧美视频一区二区| 高清在线不卡av| caoporen国产精品视频| 色欲综合视频天天天| 欧美日韩亚洲综合| 日韩三级视频中文字幕| 国产日产欧产精品推荐色| 亚洲人一二三区| 五月天激情综合| 激情文学综合插| jlzzjlzz国产精品久久| 欧美日韩视频专区在线播放| 日韩视频一区二区三区| 国产欧美一区二区三区在线老狼| 国产精品久久久久久久久久久免费看 | 欧美亚洲一区二区三区四区| 欧美美女激情18p| 精品福利一二区| 国产精品久久久久久久久快鸭| 一区二区三区在线免费视频 | 亚洲精品国产视频| 青青青伊人色综合久久| 国产精品一级在线| 色婷婷久久久亚洲一区二区三区 | 日本精品一区二区三区四区的功能| 欧美精品粉嫩高潮一区二区| 国产无人区一区二区三区| 一区二区久久久| 久久99蜜桃精品| aaa亚洲精品一二三区| 337p亚洲精品色噜噜狠狠| 国产肉丝袜一区二区| 一区二区在线看| 黑人精品欧美一区二区蜜桃| 成人毛片老司机大片| 欧美精品在线视频| 中日韩免费视频中文字幕| 日韩av午夜在线观看| 99国产精品久久久久| 欧美大度的电影原声| 一区二区三区色| 国产精华液一区二区三区| 一本大道av伊人久久综合| 欧美一卡二卡三卡四卡| 亚洲女爱视频在线| 国产成人午夜精品影院观看视频 | 一区二区三区在线视频免费观看| 韩国精品主播一区二区在线观看| 欧美日韩一区二区电影| 精品精品国产高清a毛片牛牛| 亚洲一区精品在线| 黑人精品欧美一区二区蜜桃| 欧美日本一道本在线视频| 亚洲激情自拍视频| 高清av一区二区| 精品处破学生在线二十三| 婷婷夜色潮精品综合在线| 成人免费观看视频| 欧美精品一区二区三区久久久| 五月天激情综合网| 99精品视频在线观看| 国产欧美一区二区精品性色 | 麻豆国产精品777777在线| 在线欧美日韩国产| 国产精品久久久久精k8| 国产成人在线网站| 欧美精品久久99久久在免费线 | 久久丁香综合五月国产三级网站| 欧美视频一区二区三区在线观看| 国产性色一区二区| 日韩电影在线观看电影| 欧美久久久久久久久中文字幕| 亚洲午夜电影在线| 成人污视频在线观看| 久久综合九色欧美综合狠狠| 久久99精品久久久久婷婷| 欧美一级午夜免费电影| 亚洲sss视频在线视频| 欧美日韩亚洲国产综合| 亚洲va韩国va欧美va| 精品视频一区三区九区| 夜夜精品浪潮av一区二区三区| 色综合天天综合网天天狠天天| 中文字幕一区二区三区在线播放 | 国产精品一级片在线观看| 久久伊99综合婷婷久久伊| 国产在线国偷精品产拍免费yy| 欧美成人精品3d动漫h| 国内精品国产三级国产a久久| 精品国产乱码久久久久久免费 | 亚洲一区二区三区四区在线 | 亚洲免费色视频| 欧美在线观看一区二区| 亚洲国产欧美一区二区三区丁香婷| 在线免费不卡电影| 日韩高清电影一区| 欧美精品一区二区三区高清aⅴ| 国产精品亚洲第一| 亚洲欧美一区二区不卡| 欧美午夜宅男影院| 日韩av一级电影| www激情久久| 成人app软件下载大全免费| 亚洲日本va午夜在线影院| 欧美日韩国产中文| 国产凹凸在线观看一区二区| 日韩午夜精品电影| 国产suv精品一区二区6| 亚洲成人av一区二区| 国产三级欧美三级| 欧美日韩一区二区在线观看| 国产麻豆9l精品三级站| 亚洲自拍都市欧美小说| 久久综合九色综合97婷婷女人 | 精品国产免费视频| 91久久精品一区二区三区| 国产一区在线看| 亚洲成年人网站在线观看| 中文天堂在线一区| 欧美一区二区二区| 色哟哟一区二区三区| 国产一区二区在线看| 亚洲第一狼人社区| 国产精品国产三级国产普通话99 | 欧美tickle裸体挠脚心vk| 91久久免费观看| 国产91综合网| 久久 天天综合| 日韩有码一区二区三区| 亚洲精品视频免费观看| 国产欧美日韩精品一区|