亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? movingaveragemodel.java

?? 搞算法預(yù)測的可以來看。有移動(dòng)平均法
?? JAVA
字號(hào):
////  OpenForecast - open source, general-purpose forecasting package.//  Copyright (C) 2002-2004  Steven R. Gould////  This library is free software; you can redistribute it and/or//  modify it under the terms of the GNU Lesser General Public//  License as published by the Free Software Foundation; either//  version 2.1 of the License, or (at your option) any later version.////  This library is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU//  Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with this library; if not, write to the Free Software//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//package net.sourceforge.openforecast.models;import net.sourceforge.openforecast.DataSet;/** * A moving average forecast model is based on an artificially constructed * time series in which the value for a given time period is replaced by the * mean of that value and the values for some number of preceding and * succeeding time periods. As you may have guessed from the description, this * model is best suited to time-series data; i.e. data that changes over time. * For example, many charts of individual stocks on the stock market show 20, * 50, 100 or 200 day moving averages as a way to show trends. * * <p>Since the forecast value for any given period is an average of the * previous periods, then the forecast will always appear to "lag" behind * either increases or decreases in the observed (dependent) values. For * example, if a data series has a noticable upward trend then a moving average * forecast will generally provide an underestimate of the values of the * dependent variable. * * <p>The moving average method has an advantage over other forecasting models * in that it does smooth out peaks and troughs (or valleys) in a set of * observations. However, it also has several disadvantages. In particular this * model does not produce an actual equation. Therefore, it is not all that * useful as a medium-long range forecasting tool. It can only reliably be * used to forecast one or two periods into the future. * * <p>The moving average model is a special case of the more general weighted * moving average. In the simple moving average, all weights are equal. * @author Steven R. Gould * @since 0.3 */public class MovingAverageModel extends WeightedMovingAverageModel{    /**     * Constructs a new moving average forecasting model. For a valid model to     * be constructed, you should call init and pass in a data set containing     * a series of data points with the time variable initialized to identify     * the independent variable.     */    public MovingAverageModel()    {    }        /**     * Constructs a new moving average forecasting model, using the given name     * as the independent variable.     * @param independentVariable the name of the independent variable to use     * in this model.     * @deprecated As of 0.4, replaced by {@link #MovingAverageModel}.     */    public MovingAverageModel( String independentVariable )    {        super( independentVariable );    }        /**     * Constructs a new moving average forecasting model, using the specified     * period. For a valid model to be constructed, you should call init and     * pass in a data set containing a series of data points with the time     * variable initialized to identify the independent variable.     *     * <p>The period value is used to determine the number of observations to     * be used to calculate the moving average. For example, for a 50-day     * moving average where the data points are daily observations, then the     * period should be set to 50.     *     * <p>The period is also used to determine the amount of future periods     * that can effectively be forecast. With a 50 day moving average, then we     * cannot reasonably - with any degree of accuracy - forecast more than     * 50 days beyond the last period for which data is available. This may be     * more beneficial than, say a 10 day period, where we could only     * reasonably forecast 10 days beyond the last period.     * @param period the number of observations to be used to calculate the     * moving average.     */    public MovingAverageModel( int period )    {        double[] weights = new double[period];        for ( int p=0; p<period; p++ )            weights[p] = 1.0/period;                setWeights( weights );    }        /**     * Constructs a new moving average forecasting model, using the given name     * as the independent variable and the specified period.     * @param independentVariable the name of the independent variable to use     * in this model.     * @param period the number of observations to be used to calculate the     * moving average.     * @deprecated As of 0.4, replaced by {@link #MovingAverageModel(int)}.     */    public MovingAverageModel( String independentVariable, int period )    {        super( independentVariable );                double[] weights = new double[period];        for ( int p=0; p<period; p++ )            weights[p] = 1.0/period;                setWeights( weights );    }        /**     * Used to initialize the moving average model. This method must be     * called before any other method in the class. Since the moving     * average model does not derive any equation for forecasting, this     * method uses the input DataSet to calculate forecast values for all     * valid values of the independent time variable.     * @param dataSet a data set of observations that can be used to     * initialize the forecasting parameters of the forecasting model.     */    public void init( DataSet dataSet )    {        if ( getNumberOfPeriods() <= 0 )            {                // Number of periods has not yet been defined                //  - what's a reasonable number to use?                                // Use maximum number of periods as a default                int period = getNumberOfPeriods();                                // Set weights for moving average model                double[] weights = new double[period];                for ( int p=0; p<period; p++ )                    weights[p] = 1/period;                                setWeights( weights );            }                super.init( dataSet );    }        /**     * Returns a one or two word name of this type of forecasting model. Keep     * this short. A longer description should be implemented in the toString     * method.     * @return a string representation of the type of forecasting model     *         implemented.     */    public String getForecastType()    {        return "Moving average";    }        /**     * This should be overridden to provide a textual description of the     * current forecasting model including, where possible, any derived     * parameters used.     * @return a string representation of the current forecast model, and its     *         parameters.     */    public String toString()    {        return "Moving average model, spanning " + getNumberOfPeriods()            + " periods and using an independent variable of "            + getIndependentVariable()+".";    }}// Local Variables:// tab-width: 4// End:

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩另类一区| 久久99蜜桃精品| 日韩欧美精品在线视频| 99久久婷婷国产综合精品电影| 亚洲18女电影在线观看| 国产色91在线| 日韩视频免费观看高清在线视频| 成人午夜激情在线| 老色鬼精品视频在线观看播放| 中文字幕一区二区5566日韩| 日韩欧美三级在线| 精品视频999| 97久久人人超碰| 国产麻豆视频一区| 日本欧美肥老太交大片| 亚洲欧美日韩久久| 国产精品三级视频| 久久久亚洲国产美女国产盗摄 | 国产成人免费在线视频| 天堂成人国产精品一区| 亚洲精品菠萝久久久久久久| 中文字幕高清一区| 久久精品人人做人人综合| 日韩欧美一区在线| 欧美日韩国产大片| 欧美吞精做爰啪啪高潮| 91老师片黄在线观看| a美女胸又www黄视频久久| 国产精品一区二区三区乱码| 久久99精品久久久久久| 久久爱www久久做| 午夜成人在线视频| 亚洲h精品动漫在线观看| 亚洲精品成人精品456| 亚洲美女一区二区三区| 一区在线播放视频| 中文字幕av不卡| 国产欧美日韩一区二区三区在线观看| 26uuu亚洲综合色欧美| 欧美精品一区二区三区四区| 日韩视频在线你懂得| 日韩欧美国产小视频| 欧美一区二区三区视频| 日韩一区二区三区电影| 日韩视频免费直播| 丰满岳乱妇一区二区三区| 蜜臀a∨国产成人精品| 亚洲国产sm捆绑调教视频| 日韩一区欧美一区| 色综合 综合色| 理论片日本一区| 国产精品免费观看视频| 91精品国产欧美一区二区18 | 看电视剧不卡顿的网站| 久久久久久亚洲综合影院红桃| 91免费在线播放| 色综合婷婷久久| 91视视频在线直接观看在线看网页在线看| 成人免费看片app下载| 波波电影院一区二区三区| 色狠狠色狠狠综合| 欧美电影一区二区| 欧美成人精品3d动漫h| 久久久久国产成人精品亚洲午夜| 国产精品久久久久影院色老大| 中文字幕亚洲欧美在线不卡| 亚洲一区二区在线视频| 日本不卡一区二区| 国产精品1024| 欧美午夜宅男影院| 精品少妇一区二区三区 | 国产精品午夜免费| 亚洲三级在线免费| 美女www一区二区| 大胆亚洲人体视频| 欧美人xxxx| 国产婷婷色一区二区三区四区| 国产精品你懂的在线欣赏| 亚洲国产美女搞黄色| 久久精品av麻豆的观看方式| 丰满少妇久久久久久久| 欧美日韩一区三区| 久久久精品综合| 一区二区高清视频在线观看| 老鸭窝一区二区久久精品| 99re6这里只有精品视频在线观看| 色视频一区二区| 欧美精品一区二| 一区二区三区成人在线视频| 精品一区二区三区在线播放视频 | 久久―日本道色综合久久| 18成人在线观看| 视频在线观看一区| 风间由美一区二区三区在线观看| 欧美视频一区二区三区在线观看| 亚洲精品在线免费观看视频| 亚洲一区av在线| 粗大黑人巨茎大战欧美成人| 制服.丝袜.亚洲.中文.综合| 中文字幕亚洲欧美在线不卡| 久久电影国产免费久久电影| 在线视频欧美精品| 久久久久综合网| 三级欧美在线一区| 色菇凉天天综合网| 久久精品一区蜜桃臀影院| 日日夜夜精品免费视频| 99在线热播精品免费| 亚洲精品在线三区| 麻豆91小视频| 欧美日韩www| 一区二区理论电影在线观看| 国产成人精品免费一区二区| 欧美一区二区免费| 亚洲一区二区av在线| 色域天天综合网| 亚洲少妇最新在线视频| 成人国产在线观看| 国产亚洲综合性久久久影院| 免费观看日韩电影| 欧美私模裸体表演在线观看| **网站欧美大片在线观看| 福利一区在线观看| 国产亚洲欧美色| 国产永久精品大片wwwapp| 日韩欧美国产一区在线观看| 日本不卡一二三| 日韩视频在线你懂得| 日韩国产欧美三级| 91麻豆精品国产91久久久久| 亚洲国产aⅴ天堂久久| 欧美调教femdomvk| 亚洲成av人片观看| 欧美日韩激情在线| 日韩国产精品久久| 欧美一区二区三区人| 日本强好片久久久久久aaa| 日韩一级片在线观看| 麻豆国产精品一区二区三区| 日韩一级成人av| 狠狠网亚洲精品| 国产肉丝袜一区二区| 成人一区二区三区| 亚洲欧洲综合另类| 欧美日韩国产乱码电影| 男女性色大片免费观看一区二区 | 一区二区三区中文字幕在线观看| 99久久精品免费观看| 亚洲制服丝袜在线| 欧美日韩第一区日日骚| 免费久久99精品国产| 精品国产乱码久久久久久影片| 久久国产精品第一页| 久久人人97超碰com| 99久久夜色精品国产网站| 亚洲图片有声小说| 日韩欧美一级在线播放| 国产盗摄女厕一区二区三区| 亚洲欧洲精品天堂一级| 欧洲亚洲精品在线| 男人操女人的视频在线观看欧美| 欧美精品一区二区久久婷婷| 成人做爰69片免费看网站| 亚洲乱码国产乱码精品精小说| 欧美三级日本三级少妇99| 麻豆精品视频在线观看| 国产精品嫩草影院com| 欧洲精品在线观看| 精品一区二区三区免费| 国产精品天天看| 欧美日韩综合在线免费观看| 另类中文字幕网| 国产精品三级久久久久三级| 欧美日韩激情一区| 国产成人鲁色资源国产91色综| 亚洲色图欧美偷拍| 91麻豆精品国产91| 99久久伊人网影院| 蜜臀久久久久久久| 亚洲少妇屁股交4| 日韩精品在线一区| 91网上在线视频| 国产毛片精品视频| 亚洲一区二区欧美| 国产视频视频一区| 91精品国产色综合久久| 91色综合久久久久婷婷| 看电视剧不卡顿的网站| 亚洲在线一区二区三区| 久久久99精品免费观看| 欧美日本免费一区二区三区| 福利电影一区二区| 看电影不卡的网站| 亚洲国产精品一区二区久久| 久久九九国产精品| 欧美一卡二卡在线观看| 91免费看`日韩一区二区| 国产精品综合在线视频| 石原莉奈在线亚洲三区| 亚洲美腿欧美偷拍|