?? hplatm128comparec.nc
字號:
/// $Id: HplAtm128CompareC.nc,v 1.1 2008/06/12 14:02:20 klueska Exp $
/*
* "Copyright (c) 2005 Stanford University. All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose, without fee, and without written
* agreement is hereby granted, provided that the above copyright
* notice, the following two paragraphs and the author appear in all
* copies of this software.
*
* IN NO EVENT SHALL STANFORD UNIVERSITY BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF STANFORD UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* STANFORD UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
* PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND STANFORD UNIVERSITY
* HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS."
*/
/**
* Basic compare abstraction that builds on top of a counter.
*
* @author Philip Levis
* @date Nov 22 2005
*/
// $Id: HplAtm128CompareC.nc,v 1.1 2008/06/12 14:02:20 klueska Exp $
#include <Atm128Timer.h>
generic module HplAtm128CompareC(typedef width_t @integer(),
uint8_t valueRegister,
uint8_t interruptRegister,
uint8_t interruptBit,
uint8_t flagRegister,
uint8_t flagBit)
{
provides {
// 8-bit Timers
interface HplAtm128Compare<width_t> as Compare;
}
uses {
interface HplAtm128Timer<width_t> as Timer;
interface HplAtm128TimerCtrl8 as TimerCtrl;
interface HplAtm128TimerNotify as Notify;
interface ThreadScheduler;
}
}
implementation {
/* lastZero keeps track of the phase of the clock. It denotes the sim
* time at which the underlying clock started, which is needed to
* calculate when compares will occur. */
sim_time_t lastZero = 0;
/** This variable is needed to keep track of when the underlying
* timer starts, in order to reset lastZero. When oldScale is
* AVR_CLOCK_OFF and the scale is set to something else, the
* clock starts ticking. */
uint8_t oldScale = AVR_CLOCK_OFF;
void adjust_zero(width_t currentCounter);
void cancel_compare();
sim_event_t* allocate_compare();
void configure_compare(sim_event_t* e);
void schedule_new_compare();
sim_time_t clock_to_sim(sim_time_t t);
sim_time_t sim_to_clock(sim_time_t t);
uint16_t shiftFromScale();
sim_time_t last_zero() {
if (lastZero == 0) {
lastZero = sim_mote_start_time(sim_node());
}
return lastZero;
}
async event void Notify.changed() {
uint8_t newScale = call Timer.getScale();
if (newScale != AVR_CLOCK_OFF &&
oldScale == AVR_CLOCK_OFF) {
lastZero = sim_time();
}
oldScale = newScale;
schedule_new_compare();
}
async command void Compare.reset() { REG_ACCESS(flagRegister) &= ~(1 << flagBit); }
async command void Compare.start() { SET_BIT(interruptRegister,interruptBit); }
async command void Compare.stop() { CLR_BIT(interruptRegister,interruptBit); }
async command bool Compare.test() {
return (call TimerCtrl.getInterruptFlag()).bits.ocf0;
}
async command bool Compare.isOn() {
return (call TimerCtrl.getInterruptMask()).bits.ocie0;
}
//=== Read the compare registers. =====================================
async command width_t Compare.get() { return (width_t)REG_ACCESS(valueRegister); }
//=== Write the compare registers. ====================================
async command void Compare.set(width_t t) {
atomic {
/* Re the comment above: it's a bad idea to wake up at time 0, as
we'll just spin when setting the next deadline. Try and reduce
the likelihood by delaying the interrupt...
*/
if (t == 0 || t >= 0xfe)
t = 1;
if (t != REG_ACCESS(valueRegister)) {
REG_ACCESS(valueRegister) = t;
schedule_new_compare();
}
}
}
//=== Timer interrupts signals ========================================
default async event void Compare.fired() { }
AVR_NONATOMIC_HANDLER(SIG_OUTPUT_COMPARE0) {
signal Compare.fired();
call ThreadScheduler.interruptPostAmble();
}
/**
* If the clock was stopped and has restarted, then
* we need to move the time when the clock was last
* zero to a time that reflects the current settings.
* For example, if the clock was stopped when the counter
* was 52 and then later restarted, then <tt>lastZero</tt>
* needs to be moved forward in time so that the 52
* reflects the current time.
*/
void adjust_zero(width_t currentCounter) {
sim_time_t now = sim_time();
sim_time_t adjust = currentCounter;
adjust = adjust << shiftFromScale();
adjust = clock_to_sim(adjust);
lastZero = now - adjust;
}
sim_time_t clock_to_sim(sim_time_t t) {
t *= sim_ticks_per_sec();
t /= call Notify.clockTicksPerSec();
return t;
}
sim_time_t sim_to_clock(sim_time_t t) {
t *= call Notify.clockTicksPerSec();
t /= sim_ticks_per_sec();
return t;
}
uint16_t shiftFromScale() {
uint8_t scale = call Timer.getScale();
switch (scale) {
case 0:
return 0;
case 1:
return 0;
case 2:
return 3;
case 3:
return 5;
case 4:
return 6;
case 5:
return 7;
case 6:
return 8;
case 7:
return 10;
default:
return 255;
}
}
sim_event_t* compare;
void timer0_compare_handle(sim_event_t* evt) {
dbg("HplAtm128CompareC", "%s Beginning compare at 0x%p\n", __FUNCTION__, evt);
if (evt->cancelled) {
return;
}
else {
dbg("HplAtm128CompareC", "%s Handling compare at 0x%p @ %s\n",__FUNCTION__, evt, sim_time_string());
if (READ_BIT(interruptRegister, interruptBit)) {
CLR_BIT(flagRegister, flagBit);
dbg("HplAtm128CompareC", "%s Compare interrupt @ %s\n", __FUNCTION__, sim_time_string());
SIG_OUTPUT_COMPARE0();
}
else {
SET_BIT(flagRegister, flagBit);
}
// If we haven't been cancelled
if (!evt->cancelled) {
configure_compare(evt);
sim_queue_insert(evt);
}
}
}
sim_event_t* allocate_compare() {
sim_event_t* newEvent = sim_queue_allocate_event();
dbg("HplAtm128CompareC", "Allocated compare at 0x%p\n", newEvent);
newEvent->handle = timer0_compare_handle;
newEvent->cleanup = sim_queue_cleanup_none;
return newEvent;
}
void configure_compare(sim_event_t* evt) {
sim_time_t compareTime = 0;
sim_time_t phaseOffset = 0;
uint8_t timerVal = call Timer.get();
uint8_t compareVal = call Compare.get();
// Calculate how many counter increments until timer
// hits compare, considering wraparound, and special
// case of complete wraparound.
compareTime = ((compareVal - timerVal) & 0xff);
if (compareTime == 0) {
compareTime = 256;
}
// Now convert the compare time from counter increments
// to simulation ticks, considering the fact that the
// increment actually has a phase offset.
compareTime = compareTime << shiftFromScale();
compareTime = clock_to_sim(compareTime);
compareTime += sim_time();
// How long into a timer tick was the clock actually reset?
// This covers the case when the compare is set midway between
// a tick, so it will go off a little early
phaseOffset = sim_time();
phaseOffset -= last_zero();
phaseOffset %= clock_to_sim(1 << shiftFromScale());
compareTime -= phaseOffset;
dbg("HplAtm128CompareC", "Configuring new compare of %i for %i at time %llu (@ %llu)\n", (int)compareVal, sim_node(), compareTime, sim_time());
evt->time = compareTime;
}
void schedule_new_compare() {
if (compare != NULL) {
cancel_compare();
}
if (call Timer.getScale() != AVR_CLOCK_OFF) {
sim_event_t* newEvent = allocate_compare();
configure_compare(newEvent);
compare = newEvent;
sim_queue_insert(newEvent);
}
}
void cancel_compare() {
dbg("HplAtm128CompareC", "Cancelling compare at 0x%p\n", compare);
if (compare != NULL) {
compare->cancelled = 1;
compare->cleanup = sim_queue_cleanup_total;
}
}
async event void Timer.overflow() {}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -