亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? model.tex

?? 圖像中非剛性曲線的蛇形檢測算法
?? TEX
字號:
\rhead{class MODEL}

\section{MODEL : Shape Learning Class}
{\tt MODEL} provides shape matrix and local regularization parameters learning routines. It has the following structure:

\begin{verbatim}
class MODEL : public GSNAKE {

    protected :
        short deformSample;      /* number of deformed samples */
        short shapeSample;       /* number of learned samples */
};
\end{verbatim}

{\tt MODEL} inherits extra functions from {\tt GSNAKE}. With sufficient training samples, we can generate a robust contour model with specific prior knowledge.


%
\subsection{MODEL constructor}

\subsubsection*{Synopsis}
\begin{verbatim}
	MODEL(void)
\end{verbatim}

\subsubsection*{Description}
The constructor sets {\tt deformSample} and {\tt shapeSample} to 0.


%
\subsection{Learning shape matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
	int LearnShape(GSNAKE *sample)
\end{verbatim}

\subsubsection*{Arguments}
\tb
	{\tt sample} & Gsnake sample.
\te

\subsubsection*{Returns}
\tb
	{\tt NOERROR} & Successfully operation. \\
	{\tt MEMORYERROR} & Memory allocation error.
\te 
	
\subsubsection*{Description}
{\tt LearnShape} performs learning of shape matrix from different samples. This is done by taking an initial estimate of shape matrix from the first sample. Using this shape matrix and {\em minmax} regularization, we minimize the second samples and average the shape matrix. By repeating this for the rest samples, we can derive a learned {\em model} to regenerate a new contour shape.

%
\subsection{Learning local deformation variances}

\subsubsection*{Synopsis}
\begin{verbatim}
	int LearnDeform(GSNAKE *sample)
\end{verbatim}

\subsubsection*{Arguments}
\tb
	{\tt *sample} & GSNAKE sample.
\te
 
\subsubsection*{Returns}
\tb
	{\tt NOERROR} & Successful operation. \\
	{\tt MEMORYERROR} & Memory allocation error. 
\te 

\subsubsection*{Description}
{\tt LearnDeform} learns the local regularization parameters $\lambda_{i}$ which control the {\tt GSNAKE} deformation. By computing deformation variance ($\sigma_{i}^{2}$) and noise varaince ($\sigma_{\eta}^{2}$), we have $\lambda_{i}$ as following,
\eq
	 \lambda_{i}=\frac{\sigma_{\eta}^{2}}{\sigma_{\eta}^{2}+\sigma_{i}^{2}}
\en


%
\subsection{Accessing the trained model}

\subsubsection*{Synopsis}
\begin{verbatim}
	GSNAKE *getModel(void) 
\end{verbatim}

\subsubsection*{Returns}
Learned contour model.

\subsubsection*{Description}
{\tt getModel} facilitates the retrieval of a learned contour model.


%
\subsection{Example : Learning of shape matrix from different samples}

\begin{verbatim}
void testmain( char **argv,
               unsigned char mag,
               short level,
               int magPos,
               int levelPos )
{
        MODEL model;            /* to store results of learning */
        GSNAKE sample(_EDGE);   /* sample will use _EDGE as external energy */
        char **imgsamples;      /* image samples */
        register short i;

        imgsamples = &argv[1] ;

        for( i=1; *imgsamples ; i++, imgsamples++) {

            if ( ( i == magPos ) || ( i == levelPos) )
                break;

            printf("Using Sample %s to Learn SHAPE\n\n", *imgsamples);

            sample.putRawImg(*imgsamples);

            if( i==1 ) {

                /* use manually selected feature points to
                   estimate the shape matrix */

                sample.CONTOUR::init( sample.rawImg, mag );
                model.LearnShape( &sample );
            }

            /* Using the initial shape matrix and minimiax regularization,
               the total energy of gsnake is minimize and then the shape
               matrix is updated */

            model.duplicate(&sample);
            sample.generate(level, 1);          /* generate pyramid */

            sample.localize(5, 5, 1, 0.25, 3);  /* localize the contour */
            sample.minimize(5, 5, 0, mag);      /* minimize energy */
            sample.deform( mag );               /* manually adjust */

            model.LearnShape( &sample );        /* average out the shape coef*/

            /* Using the shape matrix and the last two snaxels,
               a contour is regenerated to show invariance of shape matrix */

            if( i != 1 ) {

                printf("Regenerate the shape...\n");
                model.regenerate();     /* regenerate the shape based on mtx */
                model.CONTOUR::display( mag );
                printf("Press Enter to continue...\n");
                getchar();
             }
        }

        printf("\nResulting contour :\n");
        model.CONTOUR::print() ;
}
\end{verbatim}

This program reads in one sample at each interaction. An initial estimate of the shape matrix are computed from the first sample. {\tt localize} and {\tt minimize} will localize the second sample and minimize its energy, and then {\tt LearnShape} updates the new shape matrix. Since the shape matrix is regenerative, {\tt regenerate} will generate a new contour. By repeating this precedure for many samples, we can obtain a learned model. If we take several square images which undergo affine transformation to train the shape matrix, the program will show that the regenerative shape is still a square. This verify the invariance of a shape matrix.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美哺乳videos| 中文字幕免费一区| 国产精品女同一区二区三区| 亚洲丰满少妇videoshd| 国产精品18久久久久久久网站| 一本大道综合伊人精品热热| 精品国产精品网麻豆系列| 亚洲一级二级三级在线免费观看| 国产99一区视频免费| 精品成人a区在线观看| 日韩专区欧美专区| 欧美日韩综合在线免费观看| 中文字幕亚洲欧美在线不卡| 国产乱码精品一区二区三区av| 91麻豆精品国产91久久久使用方法 | 天天综合日日夜夜精品| 91色九色蝌蚪| 亚洲图片你懂的| 粉嫩av一区二区三区| 久久久国产精品午夜一区ai换脸| 麻豆精品久久久| 欧美一区二区三区男人的天堂| 性做久久久久久免费观看欧美| 99久久99久久精品国产片果冻| 国产欧美日韩激情| 国产成人日日夜夜| 欧美国产成人精品| 大白屁股一区二区视频| 国产精品久久网站| 国产一区不卡视频| 欧美国产一区视频在线观看| 懂色av一区二区夜夜嗨| 国产精品福利一区| 色哟哟国产精品| 亚洲一区精品在线| 欧美伦理影视网| 美女爽到高潮91| 久久夜色精品一区| 国产宾馆实践打屁股91| 成人免费在线观看入口| 欧美在线小视频| 日韩成人午夜精品| 精品国内二区三区| 成人小视频在线观看| 亚洲欧美日韩国产手机在线| 欧美三日本三级三级在线播放| 天堂久久久久va久久久久| 欧美变态凌虐bdsm| 高清shemale亚洲人妖| 亚洲欧美日韩国产一区二区三区 | 亚洲自拍偷拍av| 欧美区一区二区三区| 久88久久88久久久| 国产精品午夜久久| 国产日韩v精品一区二区| 成人h动漫精品一区二| 亚洲激情成人在线| 精品乱人伦一区二区三区| 国产v日产∨综合v精品视频| 亚洲主播在线播放| 精品国产一区二区三区久久影院| 成人不卡免费av| 日韩精品欧美成人高清一区二区| 2023国产精品视频| 色久综合一二码| 美腿丝袜亚洲三区| 中文字幕在线不卡| 日韩一级精品视频在线观看| 成人免费看黄yyy456| 日精品一区二区| 国产精品区一区二区三区| 欧美日韩国产成人在线91| 成人免费毛片嘿嘿连载视频| 日本最新不卡在线| 中文字幕视频一区| 日韩欧美国产小视频| 91久久久免费一区二区| 国产精品亚洲成人| 偷拍一区二区三区四区| 国产精品国产三级国产普通话99| 91精品国产乱| 色呦呦国产精品| 高清成人免费视频| 久久成人麻豆午夜电影| 亚洲图片自拍偷拍| 亚洲欧洲日韩一区二区三区| 日韩午夜av一区| 欧美日韩免费电影| 91麻豆精品视频| 岛国精品在线观看| 国产精品一线二线三线精华| 免费成人av在线播放| 一区二区三区欧美日韩| 国产精品久久久久久久岛一牛影视| 欧美老年两性高潮| 在线视频一区二区三| gogo大胆日本视频一区| 国产91露脸合集magnet| 韩国女主播一区二区三区| 亚洲成人7777| 亚洲第一成年网| 亚洲午夜av在线| 一区二区在线观看视频 | 午夜电影一区二区| 亚洲精品成人悠悠色影视| 亚洲欧美在线视频| 亚洲视频一区二区在线观看| 日韩一区在线看| 国产精品高潮呻吟久久| 亚洲欧洲日产国产综合网| 国产精品久久三| 亚洲日本免费电影| 亚洲欧洲日产国产综合网| 亚洲天堂2014| 免费在线观看成人| 精品一二三四区| 国产一区不卡精品| 国产91丝袜在线18| 99国产精品国产精品毛片| 91视频在线观看| 欧美性猛片xxxx免费看久爱| 欧美色图免费看| 日韩欧美综合一区| 久久久久亚洲蜜桃| 中文字幕一区二区三区在线不卡| 亚洲欧洲日产国码二区| 一区二区国产视频| 午夜久久福利影院| 激情文学综合丁香| 成人看片黄a免费看在线| 99精品欧美一区二区三区小说| 色偷偷成人一区二区三区91| 欧美天天综合网| 亚洲精品在线三区| 中文字幕在线观看一区| 亚洲国产cao| 国产一区二区三区免费看| www.av亚洲| 91麻豆精品国产91久久久久| 26uuu精品一区二区三区四区在线| 国产精品妹子av| 亚洲国产综合视频在线观看| 美女看a上一区| 99re热这里只有精品免费视频| 欧美日韩在线三区| 久久只精品国产| 一区二区三区日韩在线观看| 免费看欧美女人艹b| av在线播放一区二区三区| 欧美网站一区二区| 国产日产欧产精品推荐色| 一级精品视频在线观看宜春院| 久久99精品国产麻豆不卡| 91视频国产观看| 日韩午夜中文字幕| 中文字幕一区免费在线观看| 日本欧美大码aⅴ在线播放| av成人免费在线| 欧美精品一区二区久久婷婷| 一区二区三区蜜桃| 国产99久久久精品| 日韩一区二区三区四区| 亚洲国产乱码最新视频| 国产成人在线观看免费网站| 欧美日韩精品欧美日韩精品一 | 午夜精品福利一区二区蜜股av| 粉嫩av一区二区三区| 欧美精品黑人性xxxx| 亚洲精品视频在线观看网站| 国产精品一级黄| 日韩精品在线一区二区| 艳妇臀荡乳欲伦亚洲一区| 国产成人午夜片在线观看高清观看| 欧美日韩国产小视频| 亚洲欧美日韩在线| 成人午夜av在线| 精品国产在天天线2019| 日本中文在线一区| 欧美日韩一区不卡| 一区二区三区不卡视频在线观看| 国产成人在线观看免费网站| 精品精品欲导航| 男女男精品视频网| 51精品久久久久久久蜜臀| 亚洲sss视频在线视频| 一本色道久久加勒比精品| 国产精品美女久久久久高潮| 国产宾馆实践打屁股91| 久久久久久黄色| 国产成人在线免费观看| 久久天天做天天爱综合色| 激情伊人五月天久久综合| 欧美精品一区二区三区高清aⅴ| 麻豆精品一区二区av白丝在线| 欧美一级视频精品观看| 日本va欧美va精品发布| 日韩欧美高清在线| 黄色日韩网站视频| 国产日产欧美一区二区视频| 成人性色生活片免费看爆迷你毛片|