亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demo_rbf_fs_2.m

?? matlab/e,radial basis function
?? M
字號:
function [mydemo, cleanup] = demo_rbf_fs_2%% Demo of regularised forward selection of RBFs.%% Initialise number of chunks in mydemo.n = 0;n = n + 1;mydemo(n) = struct( ...  'comments', {{              'This is the demo for the rbf_fs_2 method.', ...              '-----------------------------------------', ...              '', ...              'rbf_fs_2 is an algorithm for regression and classification', ...              'which forwardly selects radial basis functions to generate', ...              'the data model. It includes optional ridge regression to', ...              'help control model complexity and can automatically estimate', ...              'the regularisation parameter.'}}, ...  'commands', '', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'First, let''s try the method on a relatively easy 1D problem,', ...              'the ''hermite'' data set. We''ll first get an instance of', ...              'a training set for that problem and take a look at it.'}}, ...  'commands', {{ ...              '[x, y, dconf] = get_data(''hermite'');', ...              'fig = get_fig(''rbf_fs_2 demo'');', ...              'hold off', ...              'plot(x, y, ''r*'')', ...              '%set(gca, ''XLim'', [dconf.x1 dconf.x2])', ...              '%set(gca, ''YLim'', [floor(min(y)) ceil(max(y))])', ...              '%set(gca, ''XTick'', dconf.x1:dconf.x2)', ...              '%set(gca, ''YTick'', floor(min(y)):ceil(max(y)))', ...              '%xlabel(''x'', ''FontSize'', 16)', ...              '%ylabel(''y'', ''FontSize'', 16, ''Rotation'', 0)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'We''ll also get an uncorrupted (zero noise), ordered test set', ...              'of 400 samples which we can use to judge the accuracy of', ...              'rbf_fs_2 after learning from the training set.'}}, ...  'commands', {{ ...              'dconf.std = 0;', ...              'dconf.ord = 1;', ...              'dconf.p = 400;', ...              '[xt, yt] = get_data(dconf);', ...              'hold on', ...              'plot(xt, yt, ''b-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now we''ll run the method on the training set (x,y). rbf_fs_2', ...              'will return the centres (c), radii (r) and weights (w) of an', ...              'RBF network. For now, we''ll let rbf_fs_2 choose default values', ...              'for all its control parameters. These parameters are set by', ...              'a third input argument to the routine, a structure with named', ...              'fields corresponding to each parameter. Omitting this argument', ...              'causes the method to use default values.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', '[c, r, w] = rbf_fs_2(x, y);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'To make predictions, we use rbf_dm to get the design matrix', ...              'of the test set and then multiply this by the weights to get', ...              'the model''s prediction over the test set inputs (xt).'}}, ...  'commands', {{ ...              'Ht = rbf_dm(xt, c, r);', ...              'ft = Ht * w;', ...              'plot(xt, ft, ''m-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The prediction error is obtained by comparing ft and yt.', ...              'We''ll remember this number for comparison later.', ...              '', ...              'The fit doesn''t look too great, so we might want to try to', ...              'improve the performance by changing some of the parameters', ...              'controlling rbf_fs_2, instead of lazily allowing it to operate', ...              'with defaults.'}}, ...  'commands', {{ ...              'err1 = (ft - yt)'' * (ft - yt);', ...              'disp(err1)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'By default rbf_fs_2 uses RBFs with widths equal to the spread', ...              'of the inputs in each dimension, which is pretty large. Large', ...              'RBFs can often work well for multidimensional problems but are', ...              'typically less sucessful for simple 1D problems like ''hermite''.', ...              '', ...              'To try to improve matters we''ll decrease the radius to a size', ...              'estimated from an eyeball inspection of the data.'}}, ...  'commands', 'conf.rad = 1;', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now we''re ready to try again, this time with the conf structure', ...              'specifying a radius size different from the default.', ...              '', ...              'Once again, the next step may take a few seconds to complete.'}}, ...  'commands', '[c, r, w, info] = rbf_fs_2(x, y, conf);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s calculate the predictions and plot them in the figure', ...              '(look for the red curve).'}}, ...  'commands', {{ ...              'Ht = rbf_dm(xt, c, r);', ...              'ft = Ht * w;', ...              'err2 = (ft - yt)'' * (ft - yt);', ...              'plot(xt, ft, ''r-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', 'Did we improve on the first attempt? Probably very significantly so.', ...  'commands', {{ ...              'disp(err1)', ...              'disp(err2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The previous example was a simple 1D problem. The next (and last) example', ...              'involves a more challenging data set for which changes to the default', ...              'configuration once again improve performance, though not as dramatically.'}}, ...  'commands', 'close(fig)', ...  'question', 'Do you want to see the next example?', ...  'optional', {{'yes', 'no'}});n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The data set we''re going to use is also available through the', ...              'get_data routine. It''s name is ''friedman''. The input space is', ...              'four-dimensional, there are 200 samples, and a lot of noise is', ...              'added to the training set outputs.', ...              '', ...              'So first, let''s get our train and test sets.'}}, ...  'commands', {{ ...              '[X, y, dconf] = get_data(''friedman'');', ...              'dconf.std = 0;', ...              'dconf.p = 1000;', ...              '[Xt, yt] = get_data(dconf);'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'For this problem it''s customary to scale the test set error', ...              'by the total variance, so before we do anything else, let''s', ...              'just calculate that in case we forget.'}}, ...  'commands', 'scale = sum((yt - sum(yt)/dconf.p).^2);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now, as before, we''ll first try the algorithm out without', ...              'altering its default configuration.', ...              '', ...              'The next step may take a little while. For example, it takes', ...              'about 5 seconds on my 233MHz Pentium I laptop. Information', ...              'about the time and FLOPS consumed by the method is available', ...              'from info, the fourth output argument.'}}, ...  'commands', {{ ...              '[C, R, w, info] = rbf_fs_2(X, y);', ...              'disp(info.stats.comps) % FLOPS', ...              'disp(info.stats.ticks) % time in seconds'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s see how well we can predict the test set by evaluating the', ...              'scaled sum of square errors. For comparison, a method which simply', ...              'predicted an output of zero for any input would score exactly 1.0.', ...              '', ...              'The situation can be improved by changing rbf_fs_2''s configuration', ...              'in two ways, as we will now show.'}}, ...  'commands', {{ ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err1 = (ft - yt)'' * (ft - yt) / scale;', ...              'disp(err1)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Often multi-dimensional and noisy data sets are best tackled with', ...              'surprisingly large RBFs. For this ''friedman'' problem a radius of', ...              'around 4 usually works best, even though this exceeds the range of any', ...              'individual input dimension (the inputs are all normalised to range from', ...              '-1 to +1 in each dimension).', ...              '', ...              'To hedge our bets a little, we''ll supply two centres at each input point,', ...              'one with a radius of 5 and another with radius 3. The algorithm can choose', ...              'which of the two it likes best. Note that before we setup the new conf', ...              'structure we should be careful to clear away the previous one.'}}, ...  'commands', {{ ...              'clear conf', ...              'conf.cen = [X X];            % centres', ...              'R3 = 3 * ones(4,size(X,2));  % small radii', ...              'R5 = 5 * ones(4,size(X,2));  % big radii', ...              'conf.rad = [R3 R5];'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s try that and work out the scaled prediction error again.', ...              'It should have decreased compared to the first attempt.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', {{ ...              '[C, R, w] = rbf_fs_2(X, y, conf);', ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err2 = (ft - yt)'' * (ft - yt) / scale;', ...              'disp(err1)', ...              'disp(err2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The second change we can make to the algorithm is to regularise as', ...              'well as forward select: further insurance against overfitting. To', ...              'turn regularisation on we set conf.reest to 1 which instructs the', ...              'algorithm to re-estmate the optimal regularisation parameter between', ...              'each selection. This time we don''t clear conf because we want to keep', ...              'the large radii we setup in a previous step.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', {{ ...              'conf.reest = 1;', ...              '[C, R, w] = rbf_fs_2(X, y, conf);', ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err3 = (ft - yt)'' * (ft - yt) / scale;'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Finally we can compare the three prediction errors from running the', ...              'method with (1) all its defaults, (2) large radii and (3) large radii', ...              'and regularisation.'}}, ...  'commands', {{ ...              'disp(err1)', ...              'disp(err2)', ...              'disp(err3)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', 'End of rbf_fs_2 demo.', ...  'commands', '%clear conf', ...  'question', '', ...  'optional', '');% Define the command(s) necessary to cleanup after the demo (e.g. close figures).cleanup = 'if exist(''fig'', ''var'') if ~isempty(find(findobj(''type'',''figure'') == fig)) close(fig); end; end';

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区三区美女| 精品国产一区二区三区久久久蜜月 | 一区二区视频在线| 日韩国产欧美三级| 成人国产精品免费观看动漫| 欧美日本视频在线| 国产精品久久午夜| 国内国产精品久久| 欧美日韩亚洲综合一区| 国产精品无码永久免费888| 午夜亚洲国产au精品一区二区| 国产成人在线免费| 日韩三级电影网址| 亚洲午夜电影在线观看| 粉嫩绯色av一区二区在线观看| 久久久久国产精品厨房| 亚洲福利一区二区| 色婷婷激情一区二区三区| 国产日韩精品一区二区三区在线| 蜜臀va亚洲va欧美va天堂| 日本精品一级二级| 国产精品久久久久婷婷二区次| 精品制服美女丁香| 欧美一区二区三区视频| 亚洲国产wwwccc36天堂| 一本久久综合亚洲鲁鲁五月天| 中文字幕av一区二区三区免费看| 精品在线亚洲视频| 精品国产伦一区二区三区观看体验| 午夜激情综合网| 日本道免费精品一区二区三区| 欧美国产综合一区二区| 国产成人免费在线| 欧美激情一区三区| 不卡电影一区二区三区| 中文字幕av资源一区| 国产ts人妖一区二区| 久久久一区二区三区| 国内成人精品2018免费看| 欧美电影免费观看完整版| 日韩专区中文字幕一区二区| 欧美精品三级在线观看| 日韩主播视频在线| 日韩欧美综合一区| 老汉av免费一区二区三区| 精品久久久网站| 国内成人自拍视频| 国产精品久久久久四虎| 91免费视频网| 婷婷一区二区三区| 日韩视频在线观看一区二区| 久久99热这里只有精品| 久久久久九九视频| aaa欧美日韩| 亚洲最新视频在线观看| 欧美日韩国产天堂| 美国十次综合导航| 久久免费国产精品| 91亚洲精品乱码久久久久久蜜桃| 亚洲欧美成人一区二区三区| 欧美日韩小视频| 激情小说亚洲一区| 国产精品国产三级国产aⅴ无密码| 99综合电影在线视频| 香蕉av福利精品导航| 日韩免费视频一区| 成人黄色av电影| 亚洲国产视频在线| 久久综合色之久久综合| 99久久久久久| 日韩激情一区二区| 中文字幕免费一区| 欧美日韩久久一区| 国产精品一区二区三区四区| 亚洲乱码中文字幕| 久久综合九色综合97婷婷女人| 93久久精品日日躁夜夜躁欧美| 三级精品在线观看| 亚洲欧洲精品成人久久奇米网| 欧美绝品在线观看成人午夜影视| 国产一区欧美一区| 亚洲成人免费视频| 国产欧美一区二区精品性色| 欧美日韩一区二区三区四区| 国产成人综合视频| 欧美a一区二区| 18成人在线视频| 久久综合久久鬼色| 9191国产精品| 一本大道久久a久久综合| 国精产品一区一区三区mba视频 | 成人免费视频免费观看| 亚洲第一福利一区| 国产精品每日更新在线播放网址| 欧美一区二区三区四区视频 | 久久久久久日产精品| 欧美在线观看一二区| 成人性视频网站| 国内久久精品视频| 日本欧美一区二区在线观看| 亚洲视频在线一区观看| 久久久精品免费观看| 欧美一区二区三区影视| 在线精品视频一区二区三四| 99在线视频精品| 国产精品综合二区| 久久99精品久久久久久久久久久久| 亚洲一区在线观看免费观看电影高清| 国产日本一区二区| 久久久久成人黄色影片| 日韩女优av电影在线观看| 欧美日韩一区在线观看| 色婷婷精品久久二区二区蜜臂av| 99麻豆久久久国产精品免费| 国产精品91一区二区| 国产毛片精品一区| 国产成人av一区| 成人午夜av影视| 粉嫩一区二区三区在线看| 国产成人aaa| 高清国产午夜精品久久久久久| 国产精品99久久不卡二区| 国产一区二区三区在线看麻豆| 久久精品国产免费| 黄页网站大全一区二区| 国产在线精品视频| 国产精品66部| 99这里都是精品| 在线视频一区二区三区| 欧美亚洲综合色| 91精品免费观看| 日韩一二三区视频| 国产亚洲欧美日韩在线一区| 国产欧美日韩综合| 亚洲靠逼com| 亚洲免费av网站| 日本中文字幕一区二区有限公司| 日本人妖一区二区| 国产成人午夜片在线观看高清观看| 成人免费福利片| 欧美综合天天夜夜久久| 91精品福利在线一区二区三区| 日韩精品一区二区三区蜜臀| 久久久久久久久一| 中文字幕综合网| 丝袜美腿一区二区三区| 国产精品一级片在线观看| www.日韩av| 91精品国产91久久综合桃花| 久久久久国产一区二区三区四区| 日韩一区欧美小说| 奇米888四色在线精品| 高清在线成人网| 欧美日韩亚洲综合| 国产日韩欧美高清在线| 一二三四社区欧美黄| 久久成人av少妇免费| 不卡的av网站| 日韩一区二区电影在线| 国产精品国产a级| 免费在线成人网| 色呦呦一区二区三区| 日韩免费观看高清完整版| 日韩伦理av电影| 精品一区二区在线观看| 色婷婷综合久久| 久久蜜桃av一区精品变态类天堂 | 95精品视频在线| 精品国产91乱码一区二区三区 | 国产精品福利影院| 麻豆精品视频在线观看视频| 99久久精品国产毛片| 日韩美女天天操| 一区二区三国产精华液| 国产精品77777竹菊影视小说| 欧美精品色综合| 亚洲免费观看高清完整版在线观看熊| 麻豆视频观看网址久久| 91精品福利在线| 国产精品久久三| 精品一区二区影视| 91精品国产黑色紧身裤美女| 亚洲日本韩国一区| 成人一区二区三区| 久久一区二区视频| 免费在线观看视频一区| 欧美人伦禁忌dvd放荡欲情| 亚洲视频香蕉人妖| 成人av片在线观看| 亚洲国产成人在线| 国产福利一区二区| 久久久国产精品午夜一区ai换脸| 天堂蜜桃一区二区三区| 欧亚一区二区三区| 亚洲精品久久7777| 色88888久久久久久影院野外| 亚洲视频一区二区免费在线观看| 成人午夜电影久久影院| 国产欧美日韩亚州综合| 国产一区二区不卡|