亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ex662.m

?? 通過Matlab實現有限元算法第二版
?? M
字號:
%-----------------------------------------------------------------------------
% Example 6.6.2                                                              
%   to solve the two-dimensional Laplace's equation given as            
%   u,xx + u,yy =0,  0 < x < 5, 0 < y < 10                                                                        
%   u(x,0) = 0, u(x,10) = 100sin(pi*x/10), 
%   u(0,y) = 0, u,x(5,y) = 0
%   using isoparametric four-node quadrilateral elements 
%   (see Fig. 5.9.2 for the finite element mesh)
%                                                                            
% Variable descriptions                                                      
%   k = element matrix                                             
%   f = element vector
%   kk = system matrix                                             
%   ff = system vector                                                 
%   gcoord = coordinate values of each node
%   nodes = nodal connectivity of each element
%   index = a vector containing system dofs associated with each element     
%   bcdof = a vector containing dofs associated with boundary conditions     
%   bcval = a vector containing boundary condition values associated with    
%           the dofs in 'bcdof'                                              
%   point2 - integration (or sampling) points                                             
%   weight2 - weighting coefficients                                             
%   nglx - number of integration points along x-axis                                                
%   ngly - number of integration points along y-axis
%   xcoord - x coordinate values of nodes
%   ycoord - y coordinate values of nodes
%   jacob2 - jacobian matrix
%   shape - four-node quadrilateral shape functions
%   dhdr - derivatives of shape functions w.r.t. natural coord. r
%   dhds - derivatives of shape functions w.r.t. natural coord. s
%   dhdx - derivatives of shape functions w.r.t. physical coord. x
%   dhdy - derivatives of shape functions w.r.t. physical coord. y
%-----------------------------------------------------------------------------            
clear
%------------------------------------
%  input data for control parameters
%------------------------------------

nel=16;                  % number of elements
nnel=4;                  % number of nodes per element
ndof=1;                  % number of dofs per node
nnode=25;                % total number of nodes in system
nglx=2; ngly=2;          % use 2x2 integration rule
sdof=nnode*ndof;         % total system dofs  
edof=nnel*ndof;          % dofs per element

%---------------------------------------------
%  input data for nodal coordinate values
%  gcoord(i,j) where i->node no. and j->x or y
%---------------------------------------------

gcoord(1,1)=0.0;   gcoord(1,2)=0.0;   gcoord(2,1)=1.25;   gcoord(2,2)=0.0;
gcoord(3,1)=2.5;   gcoord(3,2)=0.0;   gcoord(4,1)=3.75;   gcoord(4,2)=0.0;
gcoord(5,1)=5.0;   gcoord(5,2)=0.0;   gcoord(6,1)=0.0;    gcoord(6,2)=2.5;
gcoord(7,1)=1.25;  gcoord(7,2)=2.5;   gcoord(8,1)=2.5;    gcoord(8,2)=2.5;
gcoord(9,1)=3.75;  gcoord(9,2)=2.5;   gcoord(10,1)=5.0;   gcoord(10,2)=2.5;
gcoord(11,1)=0.0;  gcoord(11,2)=5.0;  gcoord(12,1)=1.25;  gcoord(12,2)=5.0;
gcoord(13,1)=2.5;  gcoord(13,2)=5.0;  gcoord(14,1)=3.75;  gcoord(14,2)=5.0;
gcoord(15,1)=5.0;  gcoord(15,2)=5.0;  gcoord(16,1)=0.0;   gcoord(16,2)=7.5;
gcoord(17,1)=1.25; gcoord(17,2)=7.5;  gcoord(18,1)=2.5;   gcoord(18,2)=7.5;
gcoord(19,1)=3.75; gcoord(19,2)=7.5;  gcoord(20,1)=5.0;   gcoord(20,2)=7.5;
gcoord(21,1)=0.0;  gcoord(21,2)=10.;  gcoord(22,1)=1.25;  gcoord(22,2)=10.;
gcoord(23,1)=2.5;  gcoord(23,2)=10.;  gcoord(24,1)=3.75;  gcoord(24,2)=10.;
gcoord(25,1)=5.0;  gcoord(25,2)=10.;  

%---------------------------------------------------------
%  input data for nodal connectivity for each element
%  nodes(i,j) where i-> element no. and j-> connected nodes
%---------------------------------------------------------

nodes(1,1)=1;    nodes(1,2)=2;    nodes(1,3)=7;    nodes(1,4)=6;
nodes(2,1)=2;    nodes(2,2)=3;    nodes(2,3)=8;    nodes(2,4)=7;
nodes(3,1)=3;    nodes(3,2)=4;    nodes(3,3)=9;    nodes(3,4)=8;
nodes(4,1)=4;    nodes(4,2)=5;    nodes(4,3)=10;   nodes(4,4)=9;
nodes(5,1)=6;    nodes(5,2)=7;    nodes(5,3)=12;   nodes(5,4)=11;
nodes(6,1)=7;    nodes(6,2)=8;    nodes(6,3)=13;   nodes(6,4)=12;
nodes(7,1)=8;    nodes(7,2)=9;    nodes(7,3)=14;   nodes(7,4)=13;
nodes(8,1)=9;    nodes(8,2)=10;   nodes(8,3)=15;   nodes(8,4)=14;
nodes(9,1)=11;   nodes(9,2)=12;   nodes(9,3)=17;   nodes(9,4)=16;
nodes(10,1)=12;  nodes(10,2)=13;  nodes(10,3)=18;  nodes(10,4)=17;
nodes(11,1)=13;  nodes(11,2)=14;  nodes(11,3)=19;  nodes(11,4)=18;
nodes(12,1)=14;  nodes(12,2)=15;  nodes(12,3)=20;  nodes(12,4)=19;
nodes(13,1)=16;  nodes(13,2)=17;  nodes(13,3)=22;  nodes(13,4)=21;
nodes(14,1)=17;  nodes(14,2)=18;  nodes(14,3)=23;  nodes(14,4)=22;
nodes(15,1)=18;  nodes(15,2)=19;  nodes(15,3)=24;  nodes(15,4)=23;
nodes(16,1)=19;  nodes(16,2)=20;  nodes(16,3)=25;  nodes(16,4)=24;

%-------------------------------------
%  input data for boundary conditions
%-------------------------------------

bcdof(1)=1;             % first node is constrained
bcval(1)=0;             % whose described value is 0 
bcdof(2)=2;             % second node is constrained
bcval(2)=0;             % whose described value is 0
bcdof(3)=3;             % third node is constrained
bcval(3)=0;             % whose described value is 0 
bcdof(4)=4;             % 4th node is constrained
bcval(4)=0;             % whose described value is 0
bcdof(5)=5;             % 5th node is constrained
bcval(5)=0;             % whose described value is 0 
bcdof(6)=6;             % 6th node is constrained
bcval(6)=0;             % whose described value is 0
bcdof(7)=11;            % 11th node is constrained
bcval(7)=0;             % whose described value is 0 
bcdof(8)=16;            % 16th node is constrained
bcval(8)=0;             % whose described value is 0
bcdof(9)=21;            % 21st node is constrained
bcval(9)=0;             % whose described value is 0 
bcdof(10)=22;           % 22nd node is constrained
bcval(10)=38.2683;      % whose described value is 38.2683
bcdof(11)=23;           % 23rd node is constrained
bcval(11)=70.7107;      % whose described value is 70.7107
bcdof(12)=24;           % 24th node is constrained
bcval(12)=92.3880;      % whose described value is 92.3880
bcdof(13)=25;           % 25th node is constrained
bcval(13)=100;          % whose described value is 100

%-----------------------------------------
%  initialization of matrices and vectors
%-----------------------------------------

ff=zeros(sdof,1);       % initialization of system force vector
kk=zeros(sdof,sdof);    % initialization of system matrix
index=zeros(nnel*ndof,1);  % initialization of index vector

%-----------------------------------------------------------
%  loop for computation and assembly of element matrices
%-----------------------------------------------------------

[point2,weight2]=feglqd2(nglx,ngly);  % sampling points & weights

for iel=1:nel               % loop for the total number of elements

for i=1:nnel
nd(i)=nodes(iel,i);         % extract connected node for (iel)-th element
xcoord(i)=gcoord(nd(i),1);  % extract x value of the node
ycoord(i)=gcoord(nd(i),2);  % extract y value of the node
end

k=zeros(edof,edof);         % initialization of element matrix to zero

%--------------------------------
%  numerical integration
%--------------------------------

for intx=1:nglx
x=point2(intx,1);                  % sampling point in x-axis
wtx=weight2(intx,1);               % weight in x-axis
for inty=1:ngly
y=point2(inty,2);                  % sampling point in y-axis
wty=weight2(inty,2) ;              % weight in y-axis

[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
                                      % derivatives at sampling point

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord);  % compute Jacobian

detjacob=det(jacob2);                 % determinant of Jacobian
invjacob=inv(jacob2);                 % inverse of Jacobian matrix

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
                                               % physical coordinate

%------------------------------
%  compute element matrix
%------------------------------

for i=1:edof
for j=1:edof
k(i,j)=k(i,j)+(dhdx(i)*dhdx(j)+dhdy(i)*dhdy(j))*wtx*wty*detjacob;
end
end

end
end                                   % end of numerical integration loop

index=feeldof(nd,nnel,ndof);% extract system dofs associated with element

%----------------------------------
% assemble element matrices 
%----------------------------------

kk=feasmbl1(kk,k,index);    

end                        % end of element loops

%-----------------------------
%   apply boundary conditions
%-----------------------------

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);

%----------------------------
%  solve the matrix equation
%----------------------------

fsol=kk\ff;   

%---------------------
% analytical solution
%---------------------

for i=1:nnode
x=gcoord(i,1); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x)/sinh(3.1415927); 
end

%------------------------------------
% print both exact and fem solutions
%------------------------------------

num=1:1:sdof;
store=[num' fsol esol']


%---------------------------------------------------------------

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精彩视频一区二区三区| 午夜精品久久久久久久久久 | 久久美女高清视频| 91精品一区二区三区久久久久久 | 日韩中文字幕区一区有砖一区| 亚洲婷婷综合久久一本伊一区 | 亚洲女爱视频在线| 国产精品伦一区二区三级视频| 欧美国产乱子伦| 国产精品卡一卡二| 亚洲精品亚洲人成人网| 亚洲大片精品永久免费| 日韩电影在线免费| 精品一区二区三区免费视频| 国产美女精品人人做人人爽| 国产成人精品影视| 色婷婷av一区二区| 欧美日韩国产欧美日美国产精品| 欧美精品三级在线观看| 亚洲精品在线网站| 久久久99精品免费观看| 亚洲女同ⅹxx女同tv| 亚洲国产欧美一区二区三区丁香婷| 天堂蜜桃一区二区三区| 极品少妇xxxx精品少妇偷拍| 成人爽a毛片一区二区免费| 色综合中文字幕国产| 色av一区二区| 欧美一区二区三区的| 中文乱码免费一区二区| 一区二区三区四区在线| 美女视频免费一区| 92精品国产成人观看免费| 欧美日韩国产免费一区二区| 久久综合精品国产一区二区三区| 国产精品久久三区| 男女男精品视频| 91蝌蚪porny| 欧美不卡123| 亚洲激情自拍视频| 国产精一品亚洲二区在线视频| 91最新地址在线播放| 精品成a人在线观看| 亚洲一区二区四区蜜桃| 国产成人精品1024| 5月丁香婷婷综合| 国产精品国产三级国产有无不卡 | 国产精品高潮久久久久无| 亚洲成人综合在线| 成人激情小说乱人伦| 欧美日韩在线三区| 成人欧美一区二区三区1314| 九色综合狠狠综合久久| 欧美日韩一级片网站| 国产亚洲福利社区一区| 秋霞午夜av一区二区三区| 色哟哟亚洲精品| 中文字幕在线不卡国产视频| 精品一区二区三区免费播放| 国产亚洲一本大道中文在线| 青椒成人免费视频| 欧洲av一区二区嗯嗯嗯啊| 中国av一区二区三区| 国产美女一区二区| 精品粉嫩超白一线天av| 日本欧美一区二区| 91麻豆精品91久久久久同性| 亚洲影院免费观看| 在线日韩一区二区| 亚洲精品高清视频在线观看| 99久久国产综合色|国产精品| 国产欧美精品一区二区三区四区| 久久99国产精品免费| 欧美一区二区性放荡片| 石原莉奈在线亚洲二区| 欧美高清视频在线高清观看mv色露露十八 | 国内精品久久久久影院薰衣草| 91黄色免费观看| 亚洲综合网站在线观看| 91视频免费播放| 一区二区三区在线视频观看| 91久久一区二区| 亚洲成av人片一区二区| 欧美一区二区在线播放| 精品一区二区在线看| 久久亚洲欧美国产精品乐播| 国产精品综合二区| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 | 午夜伊人狠狠久久| 欧美精品aⅴ在线视频| 久久成人免费电影| 国产精品蜜臀在线观看| 色综合天天综合色综合av| 一区二区久久久久| 91精品国产综合久久婷婷香蕉| 久久精品理论片| 国产欧美日韩三区| 在线视频国内一区二区| 久久精品国产久精国产| 国产欧美综合色| 欧美亚洲日本一区| 日韩av中文字幕一区二区 | 成人va在线观看| 亚洲免费在线电影| 91精品国产乱码| 国产不卡视频一区| 亚洲福利一区二区三区| 久久久综合网站| 在线亚洲一区观看| 国产自产高清不卡| 亚洲激情五月婷婷| 精品捆绑美女sm三区| 色综合天天综合给合国产| 石原莉奈在线亚洲三区| 中文字幕欧美激情| 国产精品国产自产拍在线| 国产成人精品综合在线观看| 91色综合久久久久婷婷| 亚洲国产cao| 中文字幕精品三区| 欧美一级一区二区| 99国产精品一区| 亚洲最大成人网4388xx| 欧美性极品少妇| 一区二区三区精品在线观看| 日本一区二区三区国色天香| 久久精品在这里| 中文字幕电影一区| 亚洲视频网在线直播| 亚洲一区二区黄色| 蜜臀av性久久久久蜜臀aⅴ流畅| 免费av网站大全久久| 国产精品一级在线| 99在线视频精品| 在线观看一区日韩| 欧美成人乱码一区二区三区| 久久久久久久久久久电影| 国产精品乱码人人做人人爱 | 在线观看网站黄不卡| 欧美老肥妇做.爰bbww视频| 日韩精品一区二区在线观看| 久久久国产精品午夜一区ai换脸| 国产欧美精品一区| 亚洲成人午夜影院| 黄色日韩网站视频| 在线视频观看一区| 26uuu欧美日本| 亚洲精品中文在线影院| 男人的天堂久久精品| 不卡av免费在线观看| 欧美高清hd18日本| 中日韩av电影| 日本美女视频一区二区| 成人性生交大片免费看在线播放| 在线免费观看成人短视频| 精品理论电影在线观看 | 亚洲福利视频三区| 国产精品一级在线| 777午夜精品视频在线播放| 国产欧美一区二区精品忘忧草| 亚洲一区中文日韩| 国产99一区视频免费| 在线播放视频一区| 日本一区二区综合亚洲| 日韩二区三区在线观看| 91一区二区三区在线观看| 精品国产乱码久久久久久久| 亚洲综合久久久| 国产麻豆成人传媒免费观看| 欧美日韩国产经典色站一区二区三区 | 日本韩国精品在线| 久久久精品影视| 男人操女人的视频在线观看欧美| 97久久超碰国产精品| 久久夜色精品一区| 日日夜夜一区二区| 91免费小视频| 欧美国产精品久久| 国产一区二区精品久久| 日韩午夜三级在线| 亚洲国产日韩综合久久精品| 91网站最新网址| 国产精品理论片| 国产91丝袜在线播放| 欧美精品一区二| 久久精品99久久久| 日韩欧美精品三级| 日本大胆欧美人术艺术动态| 欧美午夜精品久久久久久孕妇| 日韩美女精品在线| 成人sese在线| 国产精品久久久久久久久晋中| 国产91精品一区二区| 国产三级精品三级| 国产九色精品成人porny| 久久综合资源网| 久草这里只有精品视频| 精品国产制服丝袜高跟| 日韩和欧美的一区| 欧美一区二区三区小说|