?? ex591.m
字號:
%----------------------------------------------------------------------------
% EX5.9.1.m
% to solve the two-dimensional Laplace's equation given as
% u,xx + u,yy =0, 0 < x < 5, 0 < y < 10
% u(x,0) = 0, u(x,10) = 100sin(pi*x/10),
% u(0,y) = 0, u,x(5,y) = 0
% using linear triangular elements
%(see Fig. 5.9.1 for the finite element mesh)
%
% Variable descriptions
% k = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------
%------------------------------------
% input data for control parameters
%------------------------------------
clear
nel=32; % number of elements
nnel=3; % number of nodes per element
ndof=1; % number of dofs per node
nnode=25; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%---------------------------------------------
% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y
%---------------------------------------------
gcoord(1,1)=0.0; gcoord(1,2)=0.0; gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0; gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0; gcoord(6,1)=0.0; gcoord(6,2)=2.5;
gcoord(7,1)=1.25; gcoord(7,2)=2.5; gcoord(8,1)=2.5; gcoord(8,2)=2.5;
gcoord(9,1)=3.75; gcoord(9,2)=2.5; gcoord(10,1)=5.0; gcoord(10,2)=2.5;
gcoord(11,1)=0.0; gcoord(11,2)=5.0; gcoord(12,1)=1.25; gcoord(12,2)=5.0;
gcoord(13,1)=2.5; gcoord(13,2)=5.0; gcoord(14,1)=3.75; gcoord(14,2)=5.0;
gcoord(15,1)=5.0; gcoord(15,2)=5.0; gcoord(16,1)=0.0; gcoord(16,2)=7.5;
gcoord(17,1)=1.25; gcoord(17,2)=7.5; gcoord(18,1)=2.5; gcoord(18,2)=7.5;
gcoord(19,1)=3.75; gcoord(19,2)=7.5; gcoord(20,1)=5.0; gcoord(20,2)=7.5;
gcoord(21,1)=0.0; gcoord(21,2)=10.; gcoord(22,1)=1.25; gcoord(22,2)=10.;
gcoord(23,1)=2.5; gcoord(23,2)=10.; gcoord(24,1)=3.75; gcoord(24,2)=10.;
gcoord(25,1)=5.0; gcoord(25,2)=10.;
%---------------------------------------------------------
% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
%---------------------------------------------------------
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10;
nodes(5,1)=1; nodes(5,2)=7; nodes(5,3)=6;
nodes(6,1)=2; nodes(6,2)=8; nodes(6,3)=7;
nodes(7,1)=3; nodes(7,2)=9; nodes(7,3)=8;
nodes(8,1)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,1)=6; nodes(9,2)=7; nodes(9,3)=12;
nodes(10,1)=7; nodes(10,2)=8; nodes(10,3)=13;
nodes(11,1)=8; nodes(11,2)=9; nodes(11,3)=14;
nodes(12,1)=9; nodes(12,2)=10; nodes(12,3)=15;
nodes(13,1)=6; nodes(13,2)=12; nodes(13,3)=11;
nodes(14,1)=7; nodes(14,2)=13; nodes(14,3)=12;
nodes(15,1)=8; nodes(15,2)=14; nodes(15,3)=13;
nodes(16,1)=9; nodes(16,2)=15; nodes(16,3)=14;
nodes(17,1)=11; nodes(17,2)=12; nodes(17,3)=17;
nodes(18,1)=12; nodes(18,2)=13; nodes(18,3)=18;
nodes(19,1)=13; nodes(19,2)=14; nodes(19,3)=19;
nodes(20,1)=14; nodes(20,2)=15; nodes(20,3)=20;
nodes(21,1)=11; nodes(21,2)=17; nodes(21,3)=16;
nodes(22,1)=12; nodes(22,2)=18; nodes(22,3)=17;
nodes(23,1)=13; nodes(23,2)=19; nodes(23,3)=18;
nodes(24,1)=14; nodes(24,2)=20; nodes(24,3)=19;
nodes(25,1)=16; nodes(25,2)=17; nodes(25,3)=22;
nodes(26,1)=17; nodes(26,2)=18; nodes(26,3)=23;
nodes(27,1)=18; nodes(27,2)=19; nodes(27,3)=24;
nodes(28,1)=19; nodes(28,2)=20; nodes(28,3)=25;
nodes(29,1)=16; nodes(29,2)=22; nodes(29,3)=21;
nodes(30,1)=17; nodes(30,2)=23; nodes(30,3)=22;
nodes(31,1)=18; nodes(31,2)=24; nodes(31,3)=23;
nodes(32,1)=19; nodes(32,2)=25; nodes(32,3)=24;
%-------------------------------------
% input data for boundary conditions
%-------------------------------------
bcdof(1)=1; % first node is constrained
bcval(1)=0; % whose described value is 0
bcdof(2)=2; % second node is constrained
bcval(2)=0; % whose described value is 0
bcdof(3)=3; % third node is constrained
bcval(3)=0; % whose described value is 0
bcdof(4)=4; % 4th node is constrained
bcval(4)=0; % whose described value is 0
bcdof(5)=5; % 5th node is constrained
bcval(5)=0; % whose described value is 0
bcdof(6)=6; % 6th node is constrained
bcval(6)=0; % whose described value is 0
bcdof(7)=11; % 11th node is constrained
bcval(7)=0; % whose described value is 0
bcdof(8)=16; % 16th node is constrained
bcval(8)=0; % whose described value is 0
bcdof(9)=21; % 21st node is constrained
bcval(9)=0; % whose described value is 0
bcdof(10)=22; % second node is constrained
bcval(10)=38.2683; % whose described value is 38.2683
bcdof(11)=23; % third node is constrained
bcval(11)=70.7107; % whose described value is 70.7107
bcdof(12)=24; % 4th node is constrained
bcval(12)=92.3880; % whose described value is 92.3880
bcdof(13)=25; % 5th node is constrained
bcval(13)=100; % whose described value is 100
%-----------------------------------------
% initialization of matrices and vectors
%-----------------------------------------
ff=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%-----------------------------------------------------------------
% computation of element matrices and vectors and their assembly
%-----------------------------------------------------------------
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node
index=feeldof(nd,nnel,ndof);% extract system dofs associated with element
k=felp2dt3(x1,y1,x2,y2,x3,y3); % compute element matrix
kk=feasmbl1(kk,k,index); % assemble element matrices
end
%-----------------------------
% apply boundary conditions
%-----------------------------
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%----------------------------
% solve the matrix equation
%----------------------------
fsol=kk\ff;
%---------------------
% analytical solution
%---------------------
for i=1:nnode
x=gcoord(i,1); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x)/sinh(3.1415927);
end
%------------------------------------
% print both exact and fem solutions
%------------------------------------
num=1:1:sdof;
store=[num' fsol esol']
%---------------------------------------------------------------
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -