?? earpk.m
字號:
function [a,A] = earpk(Y,p);
% [a,A] = earpk(Y,p);
% Estimate Coefficients of AR-Process
% Y(t) = a' * Y(t-1) + E(t)
% using the Kalman approach
%
% Input:
% p model order
% Y Signal (AR-Process)
%
% Output:
% a AR-Parameter
% A VarianceCovariance Matrix
% Version 2.30
% last revision 21.03.1998
% Copyright (c) 1997, 1998 by Alois Schloegl
% e-mail: a.schloegl@ieee.org
% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Library General Public
% License as published by the Free Software Foundation; either
% Version 2 of the License, or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Library General Public License for more details.
%
% You should have received a copy of the GNU Library General Public
% License along with this library; if not, write to the
% Free Software Foundation, Inc., 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA.
ly = size(Y);
if ~sum(ly <= 1)
error('Must be a vector.')
end
ly = max(ly);
if diff(ly)>0
Y = Y'; % Make sure it's a row vector
end;
a=zeros(p,1);
A=diag(ones(1,p));
%------------------------------------------------
% Update Equations
%------------------------------------------------
for i=1:p,
xt=[Y(i-1:-1:1)';zeros(p-i+1,1)];
e = Y(i) - xt'*a;
axt = A*xt;
ft = (xt' * axt + 1);
c = axt / ft;
a = a + c*e;
A = A - c*xt'*A;
end;
for i=p+1:ly,
xt=Y(i-1:-1:i-p)'; % vectorize the past p samples
e = Y(i) - xt'*a; % one-step prediction error
axt = A*xt; % temporary variable
ft = (xt' * axt + 1); % nominator of Kalman Gain
c = axt / ft; % Kalman gain vector
a = a + c*e; % Update of AR-coefficients
A = A - c*xt'*A; % Update of Covariance-Matrix
end;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -