亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tyt03fi.htm

?? tcpip14study_14天學會TCPIP編程裁減移植_好書啊!
?? HTM
?? 第 1 頁 / 共 5 頁
字號:
<HTML>

<HEAD>

<TITLE>tyt03fi.htm</TITLE>

<LINK REL="ToC" HREF="index.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/index.htm">

<LINK REL="Index" HREF="tppmsgs/msgs0.htm#3" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/htindex.htm">

<LINK REL="Next" HREF="tyt04fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt04fi.htm">

<LINK REL="Previous" HREF="tyt02fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt02fi.htm"></HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080"><A ID="I0" NAME="I0"></A>

<P><P ALIGN=CENTER>

<A HREF="tyt02fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt02fi.htm" TARGET="_self"><IMG SRC="blanprev.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blanprev.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="Previous Page"></A>

<A HREF="index.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/index.htm" TARGET="_self"><IMG SRC="blantoc.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blantoc.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="TOC"></A>

<A HREF="tyt04fi.htm" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/tyt04fi.htm" TARGET="_self"><IMG SRC="blannext.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/blannext.gif" WIDTH = 37 HEIGHT = 37 BORDER = 0 ALT="Next Page"></A>


<HR ALIGN=CENTER>

<P>

<UL>

<UL>

<UL>

<LI>

<A HREF="#E68E28" >Internet Protocol</A></LI>

<UL>

<LI>

<A HREF="#E69E51" >The Internet Protocol Datagram Header</A></LI>

<UL>

<LI>

<A HREF="#E70E7" >Version Number</A></LI>

<LI>

<A HREF="#E70E8" >Header Length</A></LI>

<LI>

<A HREF="#E70E9" >Type of Service</A></LI>

<LI>

<A HREF="#E70E10" >Datagram Length (or Packet Length) </A></LI>

<LI>

<A HREF="#E70E11" >Identification</A></LI>

<LI>

<A HREF="#E70E12" >Flags</A></LI>

<LI>

<A HREF="#E70E13" >Fragment Offset</A></LI>

<LI>

<A HREF="#E70E14" >Time to Live (TTL)</A></LI>

<LI>

<A HREF="#E70E15" >Transport Protocol</A></LI>

<LI>

<A HREF="#E70E16" >Header Checksum</A></LI>

<LI>

<A HREF="#E70E17" >Sending Address and Destination Address</A></LI>

<LI>

<A HREF="#E70E18" >Options</A></LI>

<LI>

<A HREF="#E70E19" >Padding</A></LI></UL>

<LI>

<A HREF="#E69E52" >A Datagram's Life</A></LI></UL>

<LI>

<A HREF="#E68E29" >Internet Control Message Protocol (ICMP)</A></LI>

<LI>

<A HREF="#E68E30" >IPng: IP Version 6</A></LI>

<UL>

<LI>

<A HREF="#E69E53" >IPng Datagram</A></LI>

<UL>

<LI>

<A HREF="#E70E20" >Priority Classification</A></LI>

<LI>

<A HREF="#E70E21" >Flow Labels</A></LI></UL>

<LI>

<A HREF="#E69E54" >128-Bit IP Addresses</A></LI>

<LI>

<A HREF="#E69E55" >IP Extension Headers</A></LI>

<UL>

<LI>

<A HREF="#E70E22" >Hop-by-Hop Headers</A></LI>

<LI>

<A HREF="#E70E23" >Routing Headers</A></LI>

<LI>

<A HREF="#E70E24" >Fragment Headers</A></LI>

<LI>

<A HREF="#E70E25" >Authentication Headers</A></LI></UL></UL>

<LI>

<A HREF="#E68E31" >Internet Protocol Support in Different Environments</A></LI>

<UL>

<LI>

<A HREF="#E69E56" >MS-DOS</A></LI>

<LI>

<A HREF="#E69E57" >Microsoft Windows</A></LI>

<LI>

<A HREF="#E69E58" >Windows NT</A></LI>

<LI>

<A HREF="#E69E59" >OS/2</A></LI>

<LI>

<A HREF="#E69E60" >Macintosh</A></LI>

<LI>

<A HREF="#E69E61" >DEC</A></LI>

<LI>

<A HREF="#E69E62" >IBM's SNA</A></LI>

<LI>

<A HREF="#E69E63" >Local Area Networks</A></LI></UL>

<LI>

<A HREF="#E68E32" >Summary</A></LI>

<LI>

<A HREF="#E68E33" >Q&amp;A</A></LI>

<LI>

<A HREF="#E68E34" >Quiz</A></LI></UL></UL></UL>

<HR ALIGN=CENTER>

<A ID="E66E3" NAME="E66E3"></A>

<H1 ALIGN=CENTER>

<CENTER>

<FONT SIZE=6 COLOR="#FF0000"><B>&#151; 3 &#151;</B>

<BR><B>The Internet Protocol (IP)</B></FONT></CENTER></H1>

<BR>

<P>Yesterday I looked at the history of TCP/IP and the Internet in some detail. Today I move on to the first of the two important protocol elements of TCP/IP: the Internet Protocol, the &quot;IP&quot; part of TCP/IP. A good understanding of IP is necessary to continue on to TCP and UDP, because the IP is the component that handles the movement of datagrams across a network. Knowing how a datagram must be assembled and how it is moved through the networks helps you understand how the higher-level layers work with IP. For almost all protocols in the TCP/IP family, IP is the essential element that packages data and ensures that it is sent to its destination.

<BR>

<P>This chapter contains, unfortunately, even more detail on headers, protocols, and messaging than you saw in the last couple of days. This level of information is necessary in order for you to deal with understanding the applications and their interaction with IP, as well as troubleshooting the system. Although I don't go into exhaustive detail, there is enough here that you can refer back to this chapter whenever needed.

<BR>

<P>As with many of the subjects I look at in this book, don't assume that this chapter covers everything there is to know about IP. There are many books written on IP alone, going into each facet of the protocol and its functionality. Luckily, most of the details are transparent to you, and there is little advantage gained in knowing it. For that reason, I simplify the subject a little, still providing enough detail for you to see how IP works and what it does.

<BR>

<BR>

<A ID="E68E28" NAME="E68E28"></A>

<H3 ALIGN=CENTER>

<CENTER>

<FONT SIZE=5 COLOR="#FF0000"><B>Internet Protocol</B></FONT></CENTER></H3>

<BR>

<P>The Internet Protocol (IP) is a primary protocol of the OSI model, as well as an integral part of TCP/IP (as the name suggests). Although the word &quot;Internet&quot; appears in the protocol's name, it is not restricted to use with the Internet. It is true that all machines on the Internet can use or understand IP, but IP can also be used on dedicated networks that have no relation to the Internet at all. IP defines a protocol, not a connection. Indeed, IP is a very good choice for any network that needs an efficient protocol for machine-to-machine communications, although it faces some competition from protocols like Novell NetWare's IPX on small to medium local area networks that use NetWare as a PC server operating system.

<BR>

<P>What does IP do? Its main tasks are addressing of datagrams of information between computers and managing the fragmentation process of these datagrams. The protocol has a formal definition of the layout of a datagram of information and the formation of a header composed of information about the datagram. IP is responsible for the routing of a datagram, determining where it will be sent, and devising alternate routes in case of problems.

<BR>

<P>Another important aspect of IP's purpose has to do with unreliable delivery of a datagram. Unreliable in the IP sense means that the delivery of the datagram is not guaranteed, because it can get delayed, misrouted, or mangled in the breakdown and reassembly of message fragments. IP has nothing to do with flow control or reliability: there is no inherent capability to verify that a sent message is correctly received. IP does not have a checksum for the data contents of a datagram, only for the header information. The verification and flow control tasks are left to other components in the layer model. (For that matter, IP doesn't even properly handle the forwarding of datagrams. IP can make a guess as to the best routing to move a datagram to the next node along a path, but it does not inherently verify that the chosen path is the fastest or most efficient route.) Part of the IP system defines how gateways manage datagrams, how and when they should produce error messages, and how to recover from problems that might arise.

<BR>

<P>In the first chapter, you saw how data can be broken into smaller sections for transmission and then reassembled at another location, a process called fragmentation and reassembly. IP provides for a maximum packet size of 65,535 bytes, which is much larger than most networks can handle, hence the need for fragmentation. IP has the capability to automatically divide a datagram of information into smaller datagrams if necessary, using the principles you saw in Day 1.

<BR>

<P>When the first datagram of a larger message that has been divided into fragments arrives at the destination, a <I>reassembly timer</I> is started by the receiving machine's IP layer. If all the pieces of the entire datagram are not received when the timer reaches a predetermined value, all the datagrams that have been received are discarded. The receiving machine knows the order in which the pieces are to be reassembled because of a field in the IP header. One consequence of this process is that a fragmented message has a lower chance of arrival than an unfragmented message, which is why most applications try to avoid fragmentation whenever possible.

<BR>

<P>IP is connectionless, meaning that it doesn't worry about which nodes a datagram passes through along the path, or even at which machines the datagram starts and ends. This information is in the header, but the process of analyzing and passing on a datagram has nothing to do with IP analyzing the sending and receiving IP addresses. IP handles the addressing of a datagram with the full 32-bit Internet address, even though the transport protocol addresses use 8 bits. A new version of IP, called version 6 or IPng (IP Next Generation) can handle much larger headers, as you will see toward the end of today's material in the section titled &quot;IPng: IP Version 6.&quot;

<BR>

<BR>

<A ID="E69E51" NAME="E69E51"></A>

<H4 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>The Internet Protocol Datagram Header</B></FONT></CENTER></H4>

<BR>

<P>It is tempting to compare IP to a hardware network such as Ethernet because of the basic similarities in packaging information. Yesterday you saw how Ethernet assembles a frame by combining the application data with a header block containing address information. IP does the same, except the contents of the header are specific to IP. When Ethernet receives an IP-assembled datagram (which includes the IP header), it adds its header to the front to create a frame&#151;a process called <I>encapsulation.</I> One of the primary differences between the IP and Ethernet headers is that Ethernet's header contains the physical address of the destination machine, whereas the IP header contains the IP address. You might recall from yesterday's discussion that the translation between the two addresses is performed by the Address Resolution Protocol.

<BR>

<BLOCKQUOTE>

<BLOCKQUOTE>

<HR ALIGN=CENTER>

<BR>

<NOTE>

<IMG SRC="note.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/note.gif" WIDTH = 75 HEIGHT = 46>Encapsulation is the process of adding something to the start (and sometimes the end) of data, just as a pill capsule holds the medicinal contents. The added header and tail give details about the enclosed data.</NOTE>

<BR>

<HR ALIGN=CENTER>

</BLOCKQUOTE></BLOCKQUOTE>

<P>The datagram is the transfer unit used by IP, sometimes more specifically called an Internet datagram, or IP datagram. The specifications that define IP (as well as most of the other protocols and services in the TCP/IP family of protocols) define headers and tails in terms of words, where a word is 32 bits. Some operating systems use a different word length, although 32 bits per word is the more-often encountered value (some minicomputers and larger systems use 64 bits per word, for example). There are eight bits to a byte, so a 32-bit word is the same as four bytes on most systems.

<BR>

<P>The IP header is six 32-bit words in length (24 bytes total) when all the optional fields are included in the header. The shortest header allowed by IP uses five words (20 bytes total). To understand all the fields in the header, it is useful to remember that IP has no hardware dependence but must account for all versions of IP software it can encounter (providing full backward-compatibility with previous versions of IP). The IP header layout is shown schematically in Figure 3.1. The different fields in the IP header are examined in more detail in the following subsections.

<BR>

<P><B><A HREF="03tyt01.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/03tyt01.gif">Figure 3.1. The IP header layout.</A></B>

<BR>

<BR>

<A ID="E70E7" NAME="E70E7"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Version Number</B></FONT></CENTER></H5>

<BR>

<P>This is a 4-bit field that contains the IP version number the protocol software is using. The version number is required so that receiving IP software knows how to decode the rest of the header, which changes with each new release of the IP standards. The most widely used version is 4, although several systems are now testing version 6 (called IPng). The Internet and most LANs do not support IP version 6 at present.

<BR>

<P>Part of the protocol definition stipulates that the receiving software must first check the version number of incoming datagrams before proceeding to analyze the rest of the header and encapsulated data. If the software cannot handle the version used to build the datagram, the receiving machine's IP layer rejects the datagram and ignores the contents completely.

<BR>

<BR>

<A ID="E70E8" NAME="E70E8"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Header Length</B></FONT></CENTER></H5>

<BR>

<P>This 4-bit field reflects the total length of the IP header built by the sending machine; it is specified in 32-bit words. The shortest header is five words (20 bytes), but the use of optional fields can increase the header size to its maximum of six words (24 bytes). To properly decode the header, IP must know when the header ends and the data begins, which is why this field is included. (There is no start-of-data marker to show where the data in the datagram begins. Instead, the header length is used to compute an offset from the start of the IP header to give the start of the data block.)

<BR>

<BR>

<A ID="E70E9" NAME="E70E9"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Type of Service</B></FONT></CENTER></H5>

<BR>

<P>The 8-bit (1 byte) Service Type field instructs IP how to process the datagram properly. The field's 8 bits are read and assigned as shown in Figure 3.2, which shows the layout of the Service Type field inside the larger IP header shown in Figure 3.1. The first 3 bits indicate the datagram's precedence, with a value from 0 (normal) through 7 (network control). The higher the number, the more important the datagram and, in theory at least, the faster the datagram should be routed to its destination. In practice, though, most implementations of TCP/IP and practically all hardware that uses TCP/IP ignores this field, treating all datagrams with the same priority.

<BR>

<P><B><A HREF="03tyt02.gif" tppabs="http://www.mcp.com/817948800/0-672/0-672-30885-1/03tyt02.gif">Figure 3.2. The 8-bit Service Type field </B><B>layout.</A></B>

<BR>

<P>The next three bits are 1-bit flags that control the delay, throughput, and reliability of the datagram. If the bit is set to 0, the setting is normal. A bit set to 1 implies low delay, high throughput, and high reliability for the respective flags. The last two bits of the field are not used. Most of these bits are ignored by current IP implementations, and all datagrams are treated with the same delay, throughput, and reliability settings.

<BR>

<P>For most purposes, the values of all the bits in the Service Type field are set to 0 because differences in precedence, delay, throughput, and reliability between machines are virtually nonexistent unless a special network has been established. Although these flags would be useful in establishing the best routing method for a datagram, no currently available UNIX-based IP system bothers to evaluate the bits in these fields. (Although it is conceivable that the code could be modified for high security or high reliability networks.)

<BR>

<BR>

<A ID="E70E10" NAME="E70E10"></A>

<H5 ALIGN=CENTER>

<CENTER>

<FONT SIZE=4 COLOR="#FF0000"><B>Datagram Length (or Packet Length) </B></FONT></CENTER></H5>

<BR>

<P>This field gives the total length of the datagram, including the header, in bytes. The length of the data area itself can be computed by subtracting the header length from this value. The size of the total datagram length field is 16 bits, hence the 65,535 bytes maximum length of a datagram (including the header). This field is used to determine the length value to be passed to the transport protocol to set the total frame length.

<BR>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美怡红院视频| 舔着乳尖日韩一区| 日本亚洲三级在线| 成人网男人的天堂| 日韩一区二区在线看片| 久久网站热最新地址| 亚洲一区二区不卡免费| 国产成人在线视频网站| 欧美日韩高清在线播放| 中文欧美字幕免费| 国产乱码字幕精品高清av| 欧美另类久久久品| 亚洲综合精品自拍| 91在线观看下载| 国产精品午夜电影| 国产成人aaa| 欧美精品一区男女天堂| 亚洲小说欧美激情另类| www.欧美精品一二区| 精品黑人一区二区三区久久| 国产精品色噜噜| 国产精品资源站在线| 日韩欧美一二三区| 久久精品99国产国产精| 717成人午夜免费福利电影| 亚洲精品写真福利| 色综合天天视频在线观看| 中文字幕的久久| 成人精品国产免费网站| www精品美女久久久tv| 热久久久久久久| 日韩视频不卡中文| 精品午夜久久福利影院| 2021中文字幕一区亚洲| 免费精品视频在线| 欧美高清视频一二三区| 亚洲成a人片在线不卡一二三区| www.日本不卡| 亚洲一区影音先锋| 宅男在线国产精品| 国产毛片精品视频| 亚洲欧洲成人自拍| 在线免费观看成人短视频| 伊人一区二区三区| 4438成人网| 国产精品中文有码| 国产精品麻豆久久久| 91在线高清观看| 亚洲成av人**亚洲成av**| 在线91免费看| 国产精一品亚洲二区在线视频| 亚洲精品在线免费观看视频| 视频一区二区不卡| 久久久精品综合| 99精品黄色片免费大全| 亚洲同性gay激情无套| 91麻豆自制传媒国产之光| 一级日本不卡的影视| 欧美日韩久久一区二区| 美腿丝袜亚洲综合| 中文字幕日韩精品一区| 欧美综合欧美视频| 国模冰冰炮一区二区| 中文字幕乱码久久午夜不卡 | 一区二区欧美精品| 欧美一区二区三区白人| 国产乱码精品一区二区三区五月婷| 国产喂奶挤奶一区二区三区| 国产一区二区剧情av在线| 国产精品久久久久久久久动漫 | 日韩精品一区二区三区三区免费 | 亚洲一区二区精品3399| 欧美一级艳片视频免费观看| 日本sm残虐另类| 亚洲欧美二区三区| 久久久精品免费网站| 在线免费一区三区| 国产成人av电影在线播放| 亚洲午夜国产一区99re久久| 3atv一区二区三区| 91久久一区二区| 国产传媒欧美日韩成人| 午夜视频一区二区| 国产精品理论片| 精品乱人伦一区二区三区| 97久久久精品综合88久久| 老司机精品视频导航| 亚洲欧洲无码一区二区三区| 欧美日韩一区二区三区在线看| 国产精品18久久久久久久久| 国产精品成人午夜| 一区二区三区免费| 国产精品你懂的在线| 日韩欧美久久久| 91精品中文字幕一区二区三区| eeuss鲁一区二区三区| 麻豆国产91在线播放| 夜夜亚洲天天久久| ...中文天堂在线一区| 欧美成人a视频| 91精品国产色综合久久| 色婷婷激情综合| eeuss国产一区二区三区| 国产一区二区三区av电影| 亚洲va韩国va欧美va精品| 中文字幕人成不卡一区| 亚洲国产成人一区二区三区| 在线不卡中文字幕| 91精品久久久久久久99蜜桃| 99视频在线观看一区三区| 国产乱子伦视频一区二区三区| 日韩福利电影在线| 天天av天天翘天天综合网色鬼国产 | 亚瑟在线精品视频| 亚洲一区二区三区自拍| 亚洲人快播电影网| 亚洲综合小说图片| 亚洲成av人片一区二区| 亚洲国产精品一区二区久久| 国产精品久久久久aaaa樱花 | 国产精品夜夜嗨| 国产精品1区二区.| 99免费精品视频| 欧美亚洲一区二区三区四区| 波多野结衣91| 色婷婷国产精品综合在线观看| jizz一区二区| 欧美三级电影在线观看| 欧美人与z0zoxxxx视频| 欧美麻豆精品久久久久久| 欧美日韩在线播放三区| 精品视频一区二区不卡| 欧美日韩高清一区二区不卡| 91免费看视频| 欧美精品日日鲁夜夜添| 4438成人网| 国产欧美日韩卡一| 一级女性全黄久久生活片免费| 亚洲午夜精品一区二区三区他趣| 亚洲va天堂va国产va久| 日日夜夜免费精品视频| 韩国欧美一区二区| av在线一区二区三区| 欧美亚洲综合另类| 久久久亚洲精品石原莉奈| 国产欧美一区二区在线观看| 国产人久久人人人人爽| 最新日韩av在线| 日韩高清不卡一区二区| 欧美天堂亚洲电影院在线播放| 欧美色精品在线视频| 日韩欧美一卡二卡| 综合电影一区二区三区 | 亚洲特黄一级片| 日本在线播放一区二区三区| 青青草原综合久久大伊人精品优势| 国产一区二区在线影院| www.激情成人| 日韩午夜电影在线观看| 国产精品乱码一区二三区小蝌蚪| 尤物视频一区二区| 国产老女人精品毛片久久| 99久久国产综合精品色伊| 欧美日本一区二区三区| 久久精品一区四区| 香蕉成人伊视频在线观看| 国产乱码精品一区二区三区av| 欧洲在线/亚洲| 中文av一区特黄| 老司机一区二区| 欧美日韩五月天| 亚洲欧洲日韩综合一区二区| 亚洲第一精品在线| 99re视频精品| 欧美极品少妇xxxxⅹ高跟鞋| 亚洲免费视频成人| www.99精品| 欧美国产成人在线| 国产精品资源站在线| 欧美精品久久久久久久久老牛影院| 国产女同互慰高潮91漫画| 奇米综合一区二区三区精品视频| 91亚洲永久精品| 最新欧美精品一区二区三区| 日本欧美在线观看| 欧美日韩精品综合在线| 综合中文字幕亚洲| 波多野结衣在线一区| 精品成a人在线观看| 亚洲成av人片一区二区三区| 成人在线视频首页| 国产欧美日韩综合精品一区二区| 日本亚洲欧美天堂免费| 欧美亚洲动漫制服丝袜| 亚洲精品成人悠悠色影视| 不卡欧美aaaaa| 国产精品久久久久久久久搜平片| 高清成人免费视频| 国产精品色婷婷| 一本色道久久综合亚洲91 |