?? gf2exfactoring.txt
字號:
/**************************************************************************\MODULE: GF2EXFactoringSUMMARY:Routines are provided for factorization of polynomials over GF2E, aswell as routines for related problems such as testing irreducibilityand constructing irreducible polynomials of given degree.\**************************************************************************/#include <NTL/GF2EX.h>#include <NTL/pair_GF2EX_long.h>void SquareFreeDecomp(vec_pair_GF2EX_long& u, const GF2EX& f);vec_pair_GF2EX_long SquareFreeDecomp(const GF2EX& f);// Performs square-free decomposition. f must be monic. If f =// prod_i g_i^i, then u is set to a list of pairs (g_i, i). The list// is is increasing order of i, with trivial terms (i.e., g_i = 1)// deleted.void FindRoots(vec_GF2E& x, const GF2EX& f);vec_GF2E FindRoots(const GF2EX& f);// f is monic, and has deg(f) distinct roots. returns the list of// rootsvoid FindRoot(GF2E& root, const GF2EX& f);GF2E FindRoot(const GF2EX& f);// finds a single root of f. assumes that f is monic and splits into// distinct linear factorsvoid SFBerlekamp(vec_GF2EX& factors, const GF2EX& f, long verbose=0);vec_GF2EX SFBerlekamp(const GF2EX& f, long verbose=0);// Assumes f is square-free and monic. returns list of factors of f.// Uses "Berlekamp" approach, as described in detail in [Shoup,// J. Symbolic Comp. 20:363-397, 1995].void berlekamp(vec_pair_GF2EX_long& factors, const GF2EX& f, long verbose=0);vec_pair_GF2EX_long berlekamp(const GF2EX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SFBerlekamp.void NewDDF(vec_pair_GF2EX_long& factors, const GF2EX& f, const GF2EX& h, long verbose=0);vec_pair_GF2EX_long NewDDF(const GF2EX& f, const GF2EX& h, long verbose=0);// This computes a distinct-degree factorization. The input must be// monic and square-free. factors is set to a list of pairs (g, d),// where g is the product of all irreducible factors of f of degree d.// Only nontrivial pairs (i.e., g != 1) are included. The polynomial// h is assumed to be equal to X^{2^{GF2E::degree()}} mod f,// which can be computed efficiently using the function FrobeniusMap // (see below).// This routine implements the baby step/giant step algorithm // of [Kaltofen and Shoup, STOC 1995], // further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].// NOTE: When factoring "large" polynomials,// this routine uses external files to store some intermediate// results, which are removed if the routine terminates normally.// These files are stored in the current directory under names of the// form ddf-*-baby-* and ddf-*-giant-*.// The definition of "large" is controlled by the variable extern double GF2EXFileThresh// which can be set by the user. If the sizes of the tables// exceeds GF2EXFileThresh KB, external files are used.// Initial value is 256.void EDF(vec_GF2EX& factors, const GF2EX& f, const GF2EX& h, long d, long verbose=0);vec_GF2EX EDF(const GF2EX& f, const GF2EX& h, long d, long verbose=0);// Performs equal-degree factorization. f is monic, square-free, and// all irreducible factors have same degree. // h = X^{2^{GF2E::degree()}} mod f,// which can be computed efficiently using the function FrobeniusMap // (see below).// d = degree of irreducible factors of f. // This routine implements the algorithm of [von zur Gathen and Shoup,// Computational Complexity 2:187-224, 1992]void RootEDF(vec_GF2EX& factors, const GF2EX& f, long verbose=0);vec_GF2EX RootEDF(const GF2EX& f, long verbose=0);// EDF for d==1void SFCanZass(vec_GF2EX& factors, const GF2EX& f, long verbose=0);vec_GF2EX SFCanZass(const GF2EX& f, long verbose=0);// Assumes f is monic and square-free. returns list of factors of f.// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and// EDF above.void CanZass(vec_pair_GF2EX_long& factors, const GF2EX& f, long verbose=0);vec_pair_GF2EX_long CanZass(const GF2EX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SquareFreeDecomp and SFCanZass.// NOTE: these routines use modular composition. The space// used for the required tables can be controlled by the variable// GF2EXArgBound (see GF2EX.txt).void mul(GF2EX& f, const vec_pair_GF2EX_long& v);GF2EX mul(const vec_pair_GF2EX_long& v);// multiplies polynomials, with multiplicities/**************************************************************************\ Irreducible Polynomials\**************************************************************************/long ProbIrredTest(const GF2EX& f, long iter=1);// performs a fast, probabilistic irreduciblity test. The test can// err only if f is reducible, and the error probability is bounded by// 2^{-iter*GF2E::degree()}. This implements an algorithm from [Shoup,// J. Symbolic Comp. 17:371-391, 1994].long DetIrredTest(const GF2EX& f);// performs a recursive deterministic irreducibility test. Fast in// the worst-case (when input is irreducible). This implements an// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].long IterIrredTest(const GF2EX& f);// performs an iterative deterministic irreducibility test, based on// DDF. Fast on average (when f has a small factor).void BuildIrred(GF2EX& f, long n);GF2EX BuildIrred_GF2EX(long n);// Build a monic irreducible poly of degree n. void BuildRandomIrred(GF2EX& f, const GF2EX& g);GF2EX BuildRandomIrred(const GF2EX& g);// g is a monic irreducible polynomial. Constructs a random monic// irreducible polynomial f of the same degree.void FrobeniusMap(GF2EX& h, const GF2EXModulus& F);GF2EX FrobeniusMap(const GF2EXModulus& F);// Computes h = X^{2^{GF2E::degree()}} mod F, // by either iterated squaring or modular// composition. The latter method is based on a technique developed// in Kaltofen & Shoup (Faster polynomial factorization over high// algebraic extensions of finite fields, ISSAC 1997). This method is// faster than iterated squaring when deg(F) is large relative to// GF2E::degree().long IterComputeDegree(const GF2EX& h, const GF2EXModulus& F);// f is assumed to be an "equal degree" polynomial, and h =// X^{2^{GF2E::degree()}} mod f (see function FrobeniusMap above) // The common degree of the irreducible factors// of f is computed. Uses a "baby step/giant step" algorithm, similar// to NewDDF. Although asymptotocally slower than RecComputeDegree// (below), it is faster for reasonably sized inputs.long RecComputeDegree(const GF2EX& h, const GF2EXModulus& F);// f is assumed to be an "equal degree" polynomial, h = X^{2^{GF2E::degree()}}// mod f (see function FrobeniusMap above). // The common degree of the irreducible factors of f is// computed. Uses a recursive algorithm similar to DetIrredTest.void TraceMap(GF2EX& w, const GF2EX& a, long d, const GF2EXModulus& F, const GF2EX& h);GF2EX TraceMap(const GF2EX& a, long d, const GF2EXModulus& F, const GF2EX& h);// Computes w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0,// and h = X^q mod f, q a power of 2^{GF2E::degree()}. This routine// implements an algorithm from [von zur Gathen and Shoup,// Computational Complexity 2:187-224, 1992].// If q = 2^{GF2E::degree()}, then h can be computed most efficiently// by using the function FrobeniusMap above.void PowerCompose(GF2EX& w, const GF2EX& h, long d, const GF2EXModulus& F);GF2EX PowerCompose(const GF2EX& h, long d, const GF2EXModulus& F);// Computes w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q// mod f, q a power of 2^{GF2E::degree()}. This routine implements an// algorithm from [von zur Gathen and Shoup, Computational Complexity// 2:187-224, 1992].// If q = 2^{GF2E::degree()}, then h can be computed most efficiently// by using the function FrobeniusMap above.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -