?? mat_gf2.txt
字號:
/**************************************************************************\MODULE: mat_GF2SUMMARY:The class mat_GF2 implements matrices over GF(2).Each row is a vec_GF2 of the same length.For a mat_GF2 M, one may access row i of M as M[i],indexing from 0, or as M(i), indexing from 1.Individual elements of M may be accessed as M[i][j],indexing from 0, or M(i, j), indexing from 1.Some restrictions apply (see vec_GF2.txt for details).Alternatively, one may use methods get and put.\**************************************************************************/#include <NTL/vec_vec_GF2.h>class mat_GF2 { public: mat_GF2(); // initially 0 x 0 mat_GF2(const mat_GF2& a); mat_GF2& operator=(const mat_GF2& a); ~mat_GF2(); mat_GF2(INIT_SIZE_TYPE, long n, long m); // mat_T(INIT_SIZE, n, m) initializes an n x m matrix, // clearing all bits. void SetDims(long n, long m); // M.SetDims(n, m) makes M have dimension n x m. If the number of // columns (m) changes, previous storage is freed, and space for M // is reallocated and initialized; otherwise, more rows are // allocated as necessary (when number of rows increases), // excess rows are retained (when number of rows decreases), // and--importantly--the contents do not change. long NumRows() const; // M.NumRows() returns the number of rows of M long NumCols() const; // M.NumCols() returns the number of columns of M vec_GF2& operator[](long i); const vec_GF2& operator[](long i) const; // access row i, initial index 0. Any attempt to change the length // of this row will raise an error. vec_GF2& operator()(long i); const vec_GF2& operator()(long i) const; // access row i, initial index 1. Any attempt to change the length // of this row will raise an error. GF2 get(long i, long j) const; // returns entry (i, j), indexing from 0 void put(long i, long j, GF2 a); void put(long i, long j, long a); // set entry (i, j) to a, indexing from 0 // Here are the subscripting operations defined using // the "helper" classes subscript_GF2 and const_subscript_GF2. subscript_GF2 operator()(long i, long j); const_subscript_GF2 operator()(long i, long j) const; long position(const vec_GF2& a) const; // returns index of a in matrix, or -1 if not present void kill(); // free space and make 0 x 0.}; const vec_vec_GF2& rep(const mat_GF2& a);// read-only access to underlying representation. void swap(mat_GF2& X, mat_GF2& Y); // swap X and Y (fast pointer swap)void conv(mat_GF2& X, const vec_vec_GF2& A); mat_GF2 to_mat_GF2(const vec_vec_GF2& A); // convert a vector of vec_GF2's to a matrix// equality testing:long operator==(const mat_GF2& A, const mat_GF2& B); long operator!=(const mat_GF2& A, const mat_GF2& B); // Input/Output:// input format is the same as for a vector of vec_GF2s.istream& operator>>(istream&, mat_GF2&); ostream& operator<<(ostream&, const mat_GF2&); // procedural arithmetic routines:void add(mat_GF2& X, const mat_GF2& A, const mat_GF2& B); // X = A + Bvoid sub(mat_GF2& X, const mat_GF2& A, const mat_GF2& B);// X = A - B = A + Bvoid negate(mat_GF2& X, const mat_GF2& A);// X = -A = A void mul(mat_GF2& X, const mat_GF2& A, const mat_GF2& B); // X = A * Bvoid mul(vec_GF2& x, const mat_GF2& A, const vec_GF2& b); // x = A * bvoid mul(vec_GF2& x, const vec_GF2& a, const mat_GF2& B); // x = a * Bvoid mul(mat_GF2& X, const mat_GF2& A, GF2 b);void mul(mat_GF2& X, const mat_GF2& A, long b);// X = A * bvoid mul(mat_GF2& X, GF2 a, const mat_GF2& B);void mul(mat_GF2& X, long a, const mat_GF2& B);// X = a * Bvoid determinant(GF2& d, const mat_GF2& A);GF2 determinant(const mat_GF2& A);// d = determinant of Avoid transpose(mat_GF2& X, const mat_GF2& A);mat_GF2 transpose(const mat_GF2& A);// X = transpose of Avoid solve(GF2& d, vec_GF2& x, const mat_GF2& A, const vec_GF2& b);// A is an n x n matrix, b is a length n vector. Computes d = det(A). // If d != 0, solves x*A = b. void inv(GF2& d, mat_GF2& X, const mat_GF2& A);// A is an n x n matrix. Computes d = det(A). If d != 0,// computes X = A^{-1}. void sqr(mat_GF2& X, const mat_GF2& A);mat_GF2 sqr(const mat_GF2& A);// X = A*A void inv(mat_GF2& X, const mat_GF2& A);mat_GF2 inv(const mat_GF2& A);// X = A^{-1}; error is raised if A is singularvoid power(mat_GF2& X, const mat_GF2& A, const ZZ& e);mat_GF2 power(const mat_GF2& A, const ZZ& e);void power(mat_GF2& X, const mat_GF2& A, long e);mat_GF2 power(const mat_GF2& A, long e);// X = A^e; e may be negative (in which case A must be nonsingular).void ident(mat_GF2& X, long n); mat_GF2 ident_mat_GF2(long n); // X = n x n identity matrixlong IsIdent(const mat_GF2& A, long n);// test if A is n x n identity matrixvoid diag(mat_GF2& X, long n, GF2 d);mat_GF2 diag(long n, GF2 d);// X = n x n diagonal matrix with diagonal element dlong IsDiag(const mat_GF2& A, long n, long d);// test if X is an n x n diagonal matrix with diagonal element (d mod 2)long gauss(mat_GF2& M);long gauss(mat_GF2& M, long w);// Performs unitary row operations so as to bring M into row echelon// form. If the optional argument w is supplied, stops when first w// columns are in echelon form. The return value is the rank (or the// rank of the first w columns).void image(mat_GF2& X, const mat_GF2& A);// The rows of X are computed as basis of A's row space. X is is row// echelon formvoid kernel(mat_GF2& X, const mat_GF2& A);// Computes a basis for the kernel of the map x -> x*A. where x is a// row vector.// miscellaneous:void clear(mat_GF2& X);// X = 0 (dimension unchanged)long IsZero(const mat_GF2& A);// test if A is the zero matrix (any dimension)// arithmetic operator notation:mat_GF2 operator+(const mat_GF2& a, const mat_GF2& b);mat_GF2 operator-(const mat_GF2& a, const mat_GF2& b);mat_GF2 operator*(const mat_GF2& a, const mat_GF2& b);mat_GF2 operator-(const mat_GF2& a);// matrix/scalar multiplication:mat_GF2 operator*(const mat_GF2& a, GF2 b);mat_GF2 operator*(const mat_GF2& a, long b);mat_GF2 operator*(GF2 a, const mat_GF2& b);mat_GF2 operator*(long a, const mat_GF2& b);// matrix/vector multiplication:vec_GF2 operator*(const mat_GF2& a, const vec_GF2& b);vec_GF2 operator*(const vec_GF2& a, const mat_GF2& b);// assignment operator notation:mat_GF2& operator+=(mat_GF2& x, const mat_GF2& a);mat_GF2& operator-=(mat_GF2& x, const mat_GF2& a);mat_GF2& operator*=(mat_GF2& x, const mat_GF2& a);mat_GF2& operator*=(mat_GF2& x, GF2 a);mat_GF2& operator*=(mat_GF2& x, long a);vec_GF2& operator*=(vec_GF2& x, const mat_GF2& a);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -