?? gf2e.txt
字號:
/**************************************************************************\MODULE: GF2ESUMMARY:The class GF2E is used to represent polynomials in F_2[X] modulo apolynomial P. The modulus P may be any polynomial with deg(P) > 0,not necessarily irreducible. Objects of the class GF2E are represented as a GF2X of degree < deg(P).An executing program maintains a "current modulus", which is set to Pusing GF2E::init(P). The current modulus *must* be initialized beforeany GF2E constructors are invoked.The modulus may be changed, and a mechanism is provided for saving andrestoring a modulus (see classes GF2EBak and GF2EContext below).NOTE: if P is a trinomial X^n + X^k + 1, or a pentanomialX^n + X^k3 + X^k2 + X^k1 + 1, or of the form X^n + g, whereg has low degree, then performance will be somewhat improved.Such polynomials are constructed by the routinesBuildSparseIrred and BuildIrred in GF2XFactoring.\**************************************************************************/#include <NTL/GF2X.h>class GF2E {public: GF2E(); // initial value 0 GF2E(const GF2E& a); // copy constructor GF2E& operator=(const GF2E& a); // assignment GF2E& operator=(GF2 a); // assignment GF2E& operator=(long a); // assignment ~GF2E(); // destructor void init(const GF2X& P); // GF2E::init(P) initializes the current modulus to P; // required: deg(P) >= 1. static const GF2XModulus& modulus(); // GF2E::modulus() yields read-only reference to the current modulus static long degree(); // GF2E::degree() returns deg(P)};const GF2X& rep(const GF2E& a); // read-only access to representation of a/**************************************************************************\ Comparison\**************************************************************************/long operator==(const GF2E& a, const GF2E& b);long operator!=(const GF2E& a, const GF2E& b);long IsZero(const GF2E& a); // test for 0long IsOne(const GF2E& a); // test for 1// PROMOTIONS: ==, != promote {long, GF2} to GF2E on (a, b)./**************************************************************************\ Addition \**************************************************************************/// operator notation:GF2E operator+(const GF2E& a, const GF2E& b);GF2E operator-(const GF2E& a, const GF2E& b);GF2E operator-(const GF2E& a);GF2E& operator+=(GF2E& x, const GF2E& a);GF2E& operator+=(GF2E& x, GF2 a);GF2E& operator+=(GF2E& x, long a);GF2E& operator++(GF2E& x); // prefixvoid operator++(GF2E& x, int); // postfixGF2E& operator-=(GF2E& x, const GF2E& a);GF2E& operator-=(GF2E& x, GF2 a);GF2E& operator-=(GF2E& x, long a);GF2E& operator--(GF2E& x); // prefixvoid operator--(GF2E& x, int); // postfix// procedural versions:void add(GF2E& x, const GF2E& a, const GF2E& b); // x = a + bvoid sub(GF2E& x, const GF2E& a, const GF2E& b); // x = a - b = a + bvoid negate(GF2E& x, const GF2E& a); // x = - a = a// PROMOTIONS: +, -, add, sub promote {long, GF2} to GF2E on (a, b)./**************************************************************************\ Multiplication \**************************************************************************/// operator notation:GF2E operator*(const GF2E& a, const GF2E& b);GF2E& operator*=(GF2E& x, const GF2E& a);GF2E& operator*=(GF2E& x, GF2 a);GF2E& operator*=(GF2E& x, long a);// procedural versions:void mul(GF2E& x, const GF2E& a, const GF2E& b); // x = a * bvoid sqr(GF2E& x, const GF2E& a); // x = a^2GF2E sqr(const GF2E& a); // PROMOTIONS: *, mul promote {long, GF2} to GF2E on (a, b)./**************************************************************************\\**************************************************************************/// operator notation:GF2E operator/(const GF2E& a, const GF2E& b);GF2E& operator/=(GF2E& x, const GF2E& a);GF2E& operator/=(GF2E& x, GF2 a);GF2E& operator/=(GF2E& x, long a);// procedural versions:void div(GF2E& x, const GF2E& a, const GF2E& b);// x = a/b. If b is not invertible, an error is raised.void inv(GF2E& x, const GF2E& a);GF2E inv(const GF2E& a);// x = 1/aPROMOTIONS: /, div promote {long, GF2} to GF2E on (a, b)./**************************************************************************\ Exponentiation\**************************************************************************/void power(GF2E& x, const GF2E& a, const ZZ& e); GF2E power(const GF2E& a, const ZZ& e);void power(GF2E& x, const GF2E& a, long e); GF2E power(const GF2E& a, long e);// x = a^e (e may be negative)/**************************************************************************\ Random Elements\**************************************************************************/void random(GF2E& x);GF2E random_GF2E();// x = random element in GF2E./**************************************************************************\ Traces\**************************************************************************/void trace(GF2& x, const GF2E& a); // x = trace of aGF2 trace(const GF2E& a);/**************************************************************************\ Input/Output\**************************************************************************/ostream& operator<<(ostream& s, const GF2E& a);istream& operator>>(istream& s, GF2E& x);// a GF2X is read and reduced mod p/**************************************************************************\ Modulus Switching A class GF2EBak is provided for "backing up" the current modulus.Here is what you do to save the current modulus, temporarilyset it to something new, and then restore it: GF2EBak bak; bak.save(); // save current modulus (if any) GF2E::init(P); // set modulus to desired value P // ... bak.restore(); // restore old modulus (if any)Note that between the save and restore, you may have several calls toGF2E::init, each of which simply clobbers the previous modulus.The GF2EBak interface is good for implementing simple stack-likemodulus "context switching". For more general context switching,see GF2EContext below...........................................................................When the current modulus is changed, there may be extantGF2E objects. If the old modulus was saved and then later restored, these objects can be used again as if the modulus had never changed. Note, however, that if a GF2E object is created under one modulus and then used in any way (except destroyed) under another, program behavior is not predictable. This condition is notexplicitly checked for, but an error is likely to be raised.One should also not presume that things will work properlyif the modulus is changed, but its value happens to be the same---one should restore the same "context", from either a GF2EBakor a GF2EContext object. This is anyway more efficient.\**************************************************************************/class GF2EBak {public: // To describe this logic, think of a GF2EBak object // of having two components: a modulus Q (possibly "null") and // an "auto-restore bit" b. // There is also a global current modulus P (initially "null"). GF2EBak(); // Q = "null", b = 0 ~GF2EBak(); // if (b) P = Q void save(); // Q = P, b = 1 void restore(); // P = Q, b = 0private: GF2EBak(const GF2EBak&); // copy disabled void operator=(const GF2EBak&); // assignment disabled};// more general context switching:class GF2EContext {// A GF2EContext object has a modulus Q (possibly "null"),// but has no auto-restore bit like a GF2EBak object.// However, these objects can be initialized and copied with// complete generality.// As above, P is the current global modulus (initially "null")public:GF2EContext(); // Q = "null"GF2EContext(const GF2X& new_Q); // Q = new_Qvoid save(); // Q = Pvoid restore() const; // P = QGF2EContext(const GF2EContext&); // copyGF2EContext& operator=(const GF2EContext&); // assignment~GF2EContext(); // destructor};/**************************************************************************\ Miscellany\**************************************************************************/void clear(GF2E& x); // x = 0void set(GF2E& x); // x = 1static const GF2E& GF2E::zero();// GF2E::zero() yields a read-only reference to zerostatic long GF2X::WordLength();// GF2E::size() returns # of words needed to store a polynomial of// degree < GF2E::degree()void swap(GF2E& x, GF2E& y);// swap x and y (done by "pointer swapping", if possible).static ZZ& GF2E::cardinality();// yields the cardinality, i.e., 2^{GF2E::degree()}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -