亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? zzxfactoring.txt

?? 密碼大家Shoup寫的數論算法c語言實現
?? TXT
字號:
/*****************************************************************************\MODULE: ZZXFactoringSUMMARY:Routines are provided for factoring in ZZX.\*****************************************************************************/#include <NTL/ZZX.h>#include <NTL/pair_ZZX_long.h>void SquareFreeDecomp(vec_pair_ZZX_long& u, const ZZX& f);const vector(pair_ZZX_long SquareFreeDecomp(const ZZX& f);// input is primitive, with positive leading coefficient.  Performs// square-free decomposition.  If f = prod_i g_i^i, then u is set to a// lest of pairs (g_i, i).  The list is is increasing order of i, with// trivial terms (i.e., g_i = 1) deleted.void MultiLift(vec_ZZX& A, const vec_zz_pX& a, const ZZX& f, long e,               long verbose=0);// Using current value p of zz_p::modulus(), this lifts the// square-free factorization a mod p of f to a factorization A mod p^e// of f.  It is required that f and all the polynomials in a are// monic.void SFFactor(vec_ZZX& factors, const ZZX& f, long verbose=0, long bnd=0);vec_ZZX SFFactor(const ZZX& f, long verbose=0, long bnd=0);// input f is primitive and square-free, with positive leading// coefficient.  bnd, if not zero, indicates that f divides a// polynomial h whose Euclidean norm is bounded by 2^{bnd} in absolute// value.  This uses the routine SFCanZass in zz_pXFactoring and then// performs a MultiLift, followed by a brute-force search for the// factors.  // A number of heuristics are used to speed up the factor-search step.// See "implementation details" below.void factor(ZZ& c,            vec_pair_ZZX_long& factors,            const ZZX& f,            long verbose=0,            long bnd=0);// input f is is an arbitrary polynomial.  c is the content of f, and// factors is the facrorization of its primitive part.  bnd is as in// SFFactor.  The routine calls SquareFreeDecomp and SFFactor.void mul(ZZX& x, const vec_pair_ZZX_long& a);ZZX mul(const vec_pair_ZZX_long& a);// multiplies polynomials, with multiplcities./*****************************************************************************\IMPLEMENTATION DETAILSTo factor a polynomial, first its content is extracted, and it ismade squarefree.  Next, a simple hack is performed: if the polynomial is of theform g(x^l), then an attempt is made to factor g(k^m),for divisors m of l, which can in some cases greatly simplifythe factorization task.Next, the polynomial is factored modulo severalsmall primes, and one small prime p is selected as the "best".The factorization mod p is "lifted" to a factorization mod p^kfor a sufficiently large k.  This is done via quadratic Hensellifting.  Despite "folk wisdom" to the contrary, this is muchmore efficient than linear Hensel lifting, especially since NTLhas very fast polynomial arithmetic.After the "lifting phase" comes the "factor recombination phase".The factorization mod p^k may be "finer" than the true factorizationover the integers, hence we have to "combine" subsets of factorsmod p^k and test if these are factors over the integers.Subsets are considered in order of increasing cardinality.This phase can take exponential time in some cases, and soevery effort has been made to make it as fast as possible.Several heuristics are used to avoid expensive operations,and one heuristic is employed that allows huge portions ofthe search space to be "pruned" altogether.Many of these heuristics were developed together withJohn Abbott and Paul Zimmermann.They are described in the paper "Factoring in Z[x]: the searching phase",in Proc. ISSAC 2000.The factorization pattern modulo small primes can be combinedto rule out degrees of candidate factors.To make this as useful as possible, if the search is takinga long time, a the polynomial is occasionally factored moduloa new small prime.In some cases, entire cardinalities can be skipped basedon this local degree information.We also use the fact that the sizes of the coefficients ofa true factor must be small.If n is the degree of a candidate polynomial, we testthe size of X^(n-1) and X^(n-2).These tests can be carried out using single precision integerarithmetic, and so are extremely fast.Moreover, in some cases we can "prune" huge portions of thesearch space based on the X^(n-1) test.If these tests pass, then we employ both an f(1) test and an f(0)test.  By an "f(r) test", we mean that if g is a candidate factor,then g(r) must divide f(r).For both of these tests, as well as the X^(n-2) test above,we use a "lazy stack evaluation" strategy, which greatlyreduces the workload.The behaviour of these heuristics can be fine tuned bysetting the following global variables:extern long ZZXFac_InitNumPrimes;  // initial value 7// f is factored modulo this many primes// before choosing one that is "best" to work with, where// currently, "best" means that f mod p has the minimal number// of irreducible factors.extern long ZZXFac_MaxNumPrimes;  // initial value 50// During the factor recombination phase, if not much progress// is being made, occasionally more "local" information is // collected by factoring f modulo another prime.// This "local" information is used to rule out degrees // of potential factors during recombination.// This value bounds the total number of primes modulo which f // is factored.extern long ZZXFac_MaxPrune;  // initial value = 10// A kind of "meet in the middle" strategy is used// to prune the search space during recombination,// based on the X^(n-1) test.// For many (but not all) polynomials, this can greatly// reduce the running time.// When it does work, there is a time-space tradeoff:// If t = ZZXFac_MaxPrune, the running time will be reduced by a factor near// 2^t, but the table will take (at most) t*2^(t-1) bytes of storage.// Note that ZZXFac_MaxPrune is treated as an upper bound on t---the// factoring algorithm may decide to use a smaller value of t for// a number of reasons.extern long ZZXFac_PowerHack;  // initial value = 1// If this is nonzero, then the g(x^l) hack is performed;// otherwise, if it is zero, this hack is not performed.// NOTE: if you have a very hard-to-factor polynomial, run the// factoring algorithm with verbose=1 to see what is going on,// and then you can adjust these variables accordingly.\*****************************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91浏览器打开| 91香蕉视频mp4| 亚洲国产成人tv| 亚洲天堂网中文字| 欧美激情一区二区| 久久精品一区二区三区四区| 日韩欧美一二三四区| 日韩美女主播在线视频一区二区三区| 欧美日韩国产在线播放网站| 欧美一区二区在线观看| 日韩一区二区三区av| 日韩精品一区二区三区中文精品| 欧美一区二区人人喊爽| 精品国产伦一区二区三区观看体验| 日韩一二三区不卡| 国产亚洲一区二区在线观看| 国产日产精品1区| 亚洲人妖av一区二区| 亚洲国产成人av网| 日本aⅴ亚洲精品中文乱码| 久久www免费人成看片高清| 国产成人精品一区二区三区四区| 国产成人午夜电影网| 91在线porny国产在线看| 欧美视频一区二区三区在线观看| 7777精品伊人久久久大香线蕉完整版 | 一级日本不卡的影视| 亚洲免费在线看| 亚洲精品美国一| 蜜芽一区二区三区| 成人精品一区二区三区四区| 在线观看免费一区| 日韩精品一区在线观看| 亚洲六月丁香色婷婷综合久久| 三级影片在线观看欧美日韩一区二区| 麻豆久久久久久久| 一本到一区二区三区| 欧美大黄免费观看| 一区二区视频在线看| 极品瑜伽女神91| 在线亚洲一区观看| 久久久www成人免费无遮挡大片| 一区二区三区在线视频播放 | 国产在线视频不卡二| 91捆绑美女网站| 337p粉嫩大胆色噜噜噜噜亚洲| 中文字幕字幕中文在线中不卡视频| 日韩av一区二区三区| a美女胸又www黄视频久久| 日韩欧美黄色影院| 亚洲在线观看免费| 成人福利在线看| www国产亚洲精品久久麻豆| 婷婷一区二区三区| 欧洲视频一区二区| 综合在线观看色| 紧缚奴在线一区二区三区| 欧美一级理论片| 午夜av电影一区| 欧美性大战久久久久久久蜜臀 | 久久综合999| 日韩在线卡一卡二| 欧美伊人久久久久久久久影院 | 国产精品国产三级国产aⅴ原创 | 日本不卡123| 在线成人av影院| 亚洲国产一区二区视频| 91亚洲精品乱码久久久久久蜜桃| 久久久国际精品| 国产一区二区三区视频在线播放| 日韩欧美综合在线| 免费观看日韩av| 欧美成人精品1314www| 日本欧美一区二区在线观看| 精品视频一区三区九区| 亚洲国产综合91精品麻豆| 欧美自拍丝袜亚洲| 亚洲午夜三级在线| 欧美日韩激情在线| 视频一区中文字幕| 日韩三级高清在线| 国产最新精品免费| 国产欧美日韩麻豆91| 成人av在线播放网站| 中文字幕佐山爱一区二区免费| 色综合亚洲欧洲| 亚洲图片自拍偷拍| 欧美一区在线视频| 国产精品一区二区在线观看不卡| 国产性天天综合网| youjizz国产精品| 亚洲午夜久久久久久久久久久| 欧美日韩电影一区| 国内外精品视频| 亚洲三级电影网站| 欧美亚洲国产一区在线观看网站| 亚洲成av人在线观看| 欧美电影免费观看高清完整版| 国产在线视频不卡二| 亚洲视频电影在线| 91麻豆精品国产91久久久久久 | 91激情在线视频| 视频一区欧美精品| 久久亚洲一级片| 91行情网站电视在线观看高清版| 天堂蜜桃一区二区三区 | 一级做a爱片久久| 日韩你懂的在线播放| 大白屁股一区二区视频| 一区二区高清在线| 欧美成人a∨高清免费观看| 成人激情综合网站| 调教+趴+乳夹+国产+精品| 国产女人aaa级久久久级 | 国产精品久久久久久久裸模 | 成人app下载| 蜜臀av性久久久久蜜臀av麻豆| 国产色爱av资源综合区| 欧美日韩免费电影| 成人网页在线观看| 琪琪久久久久日韩精品| 亚洲色图在线视频| 欧美精品一区二区高清在线观看| 色婷婷综合激情| 国产福利一区二区三区在线视频| 亚洲国产三级在线| 中文字幕免费不卡| 久久久久青草大香线综合精品| 欧美日韩不卡一区| 色综合久久中文字幕综合网| 极品少妇xxxx精品少妇| 亚洲成av人**亚洲成av**| 日韩毛片一二三区| 国产精品视频一二三区| 精品国产一区二区三区四区四| 欧美日韩在线不卡| 91视频在线观看| 不卡高清视频专区| 粉嫩av一区二区三区粉嫩| 久久99久久久欧美国产| 天堂久久久久va久久久久| 亚洲高清不卡在线观看| 亚洲欧美另类在线| 国产精品国产三级国产aⅴ无密码| 久久先锋资源网| 久久久久久久久久久久久夜| 日韩欧美黄色影院| 欧美videossexotv100| 日韩视频一区在线观看| 欧美一区二区三区在线| 在线综合视频播放| 欧美一级二级三级蜜桃| 日韩美女在线视频| 精品精品欲导航| 久久久久久**毛片大全| 国产日韩精品视频一区| 欧美国产禁国产网站cc| 欧美激情一二三区| 国产精品灌醉下药二区| 亚洲视频每日更新| 亚洲图片有声小说| 日本色综合中文字幕| 精品亚洲国产成人av制服丝袜 | 国产日韩欧美在线一区| 国产亚洲视频系列| 中文字幕日韩精品一区| 一区二区三区影院| 亚洲成人777| 久久99国产精品久久99果冻传媒| 国产真实乱偷精品视频免| 成人听书哪个软件好| 91久久久免费一区二区| 91精品国产福利在线观看| 久久综合色一综合色88| 国产日产欧美一区二区三区| 国产精品无圣光一区二区| 亚洲色图视频免费播放| 午夜不卡av在线| 国产sm精品调教视频网站| 色欧美乱欧美15图片| 制服.丝袜.亚洲.中文.综合| 亚洲精品在线三区| 亚洲视频图片小说| 丝瓜av网站精品一区二区| 国产伦精品一区二区三区免费迷| 9人人澡人人爽人人精品| 欧美日韩性生活| 国产亚洲一二三区| 亚洲6080在线| 成人精品鲁一区一区二区| 欧美日韩国产首页| 国产亚洲精品精华液| 一区二区三区日本| 国内精品久久久久影院薰衣草 | 日韩和欧美一区二区三区| 99久久久久久| 欧美刺激脚交jootjob| 亚洲精品高清在线| 国产福利精品一区二区| 欧美一区中文字幕|