亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? zzx1.c

?? 密碼大家Shoup寫的數論算法c語言實現
?? C
?? 第 1 頁 / 共 3 頁
字號:
#include <NTL/ZZX.h>#include <NTL/new.h>NTL_START_IMPLvoid conv(zz_pX& x, const ZZX& a){   conv(x.rep, a.rep);   x.normalize();}void conv(ZZX& x, const zz_pX& a){   conv(x.rep, a.rep);   x.normalize();}long CRT(ZZX& gg, ZZ& a, const zz_pX& G){   long n = gg.rep.length();   long p = zz_p::modulus();   ZZ new_a;   mul(new_a, a, p);   long a_inv;   a_inv = rem(a, p);   a_inv = InvMod(a_inv, p);   long p1;   p1 = p >> 1;   ZZ a1;   RightShift(a1, a, 1);   long p_odd = (p & 1);   long modified = 0;   long h;   ZZ ah;   long m = G.rep.length();   long max_mn = max(m, n);   gg.rep.SetLength(max_mn);   ZZ g;   long i;   for (i = 0; i < n; i++) {      if (!CRTInRange(gg.rep[i], a)) {         modified = 1;         rem(g, gg.rep[i], a);         if (g > a1) sub(g, g, a);      }      else         g = gg.rep[i];         h = rem(g, p);      if (i < m)         h = SubMod(rep(G.rep[i]), h, p);      else         h = NegateMod(h, p);      h = MulMod(h, a_inv, p);      if (h > p1)         h = h - p;         if (h != 0) {         modified = 1;         mul(ah, a, h);            if (!p_odd && g > 0 && (h == p1))            sub(g, g, ah);         else            add(g, g, ah);      }      gg.rep[i] = g;   }   for (; i < m; i++) {      h = rep(G.rep[i]);      h = MulMod(h, a_inv, p);      if (h > p1)         h = h - p;         modified = 1;      mul(g, a, h);      gg.rep[i] = g;   }   gg.normalize();   a = new_a;   return modified;}long CRT(ZZX& gg, ZZ& a, const ZZ_pX& G){   long n = gg.rep.length();   const ZZ& p = ZZ_p::modulus();   ZZ new_a;   mul(new_a, a, p);   ZZ a_inv;   rem(a_inv, a, p);   InvMod(a_inv, a_inv, p);   ZZ p1;   RightShift(p1, p, 1);   ZZ a1;   RightShift(a1, a, 1);   long p_odd = IsOdd(p);   long modified = 0;   ZZ h;   ZZ ah;   long m = G.rep.length();   long max_mn = max(m, n);   gg.rep.SetLength(max_mn);   ZZ g;   long i;   for (i = 0; i < n; i++) {      if (!CRTInRange(gg.rep[i], a)) {         modified = 1;         rem(g, gg.rep[i], a);         if (g > a1) sub(g, g, a);      }      else         g = gg.rep[i];         rem(h, g, p);      if (i < m)         SubMod(h, rep(G.rep[i]), h, p);      else         NegateMod(h, h, p);      MulMod(h, h, a_inv, p);      if (h > p1)         sub(h, h, p);         if (h != 0) {         modified = 1;         mul(ah, a, h);            if (!p_odd && g > 0 && (h == p1))            sub(g, g, ah);         else            add(g, g, ah);      }      gg.rep[i] = g;   }   for (; i < m; i++) {      h = rep(G.rep[i]);      MulMod(h, h, a_inv, p);      if (h > p1)         sub(h, h, p);         modified = 1;      mul(g, a, h);      gg.rep[i] = g;   }   gg.normalize();   a = new_a;   return modified;}/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=l<=n and 0<b<p are   assumed. */static void LeftRotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n){  if (l == 0) {    if (&a != &b) {      a = b;    }    return;  }  /* tmp := upper l bits of b */  static ZZ tmp;  RightShift(tmp, b, n - l);  /* a := 2^l * lower n - l bits of b */  trunc(a, b, n - l);  LeftShift(a, a, l);  /* a -= tmp */  sub(a, a, tmp);  if (sign(a) < 0) {    add(a, a, p);  }}/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=p<b is assumed. */static void Rotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n){  if (IsZero(b)) {    clear(a);    return;  }  /* l %= 2n */  if (l >= 0) {    l %= (n << 1);  } else {    l = (n << 1) - 1 - (-(l + 1) % (n << 1));  }  /* a = b * 2^l mod p */  if (l < n) {    LeftRotate(a, b, l, p, n);  } else {    LeftRotate(a, b, l - n, p, n);    SubPos(a, p, a);  }}/* Fast Fourier Transform. a is a vector of length 2^l, 2^l divides 2n,   p = 2^n+1, w = 2^r mod p is a primitive (2^l)th root of   unity. Returns a(1),a(w),...,a(w^{2^l-1}) mod p in bit-reverse   order. */static void fft(vec_ZZ& a, long r, long l, const ZZ& p, long n){  long round;  long off, i, j, e;  long halfsize;  ZZ tmp, tmp1;  for (round = 0; round < l; round++, r <<= 1) {    halfsize =  1L << (l - 1 - round);    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {	/* One butterfly : 	 ( a[off], a[off+halfsize] ) *= ( 1  w^{j2^round} )	                                ( 1 -w^{j2^round} ) */	/* tmp = a[off] - a[off + halfsize] mod p */	sub(tmp, a[off], a[off + halfsize]);	if (sign(tmp) < 0) {	  add(tmp, tmp, p);	}	/* a[off] += a[off + halfsize] mod p */	add(a[off], a[off], a[off + halfsize]);	sub(tmp1, a[off], p);	if (sign(tmp1) >= 0) {	  a[off] = tmp1;	}	/* a[off + halfsize] = tmp * w^{j2^round} mod p */	Rotate(a[off + halfsize], tmp, e, p, n);      }    }  }}/* Inverse FFT. r must be the same as in the call to FFT. Result is   by 2^l too large. */static void ifft(vec_ZZ& a, long r, long l, const ZZ& p, long n){  long round;  long off, i, j, e;  long halfsize;  ZZ tmp, tmp1;  for (round = l - 1, r <<= l - 1; round >= 0; round--, r >>= 1) {    halfsize = 1L << (l - 1 - round);    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {	/* One inverse butterfly : 	 ( a[off], a[off+halfsize] ) *= ( 1               1             )	                                ( w^{-j2^round}  -w^{-j2^round} ) */	/* a[off + halfsize] *= w^{-j2^round} mod p */	Rotate(a[off + halfsize], a[off + halfsize], -e, p, n);	/* tmp = a[off] - a[off + halfsize] */	sub(tmp, a[off], a[off + halfsize]);	/* a[off] += a[off + halfsize] mod p */	add(a[off], a[off], a[off + halfsize]);	sub(tmp1, a[off], p);	if (sign(tmp1) >= 0) {	  a[off] = tmp1;	}	/* a[off+halfsize] = tmp mod p */	if (sign(tmp) < 0) {	  add(a[off+halfsize], tmp, p);	} else {	  a[off+halfsize] = tmp;	}      }    }  }}/* Multiplication a la Schoenhage & Strassen, modulo a "Fermat" number   p = 2^{mr}+1, where m is a power of two and r is odd. Then w = 2^r   is a primitive 2mth root of unity, i.e., polynomials whose product   has degree less than 2m can be multiplied, provided that the   coefficients of the product polynomial are at most 2^{mr-1} in   absolute value. The algorithm is not called recursively;   coefficient arithmetic is done directly.*/void SSMul(ZZX& c, const ZZX& a, const ZZX& b){  long na = deg(a);  long nb = deg(b);  if (na <= 0 || nb <= 0) {    PlainMul(c, a, b);    return;  }  long n = na + nb; /* degree of the product */  /* Choose m and r suitably */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */  /* Bitlength of the product: if the coefficients of a are absolutely less     than 2^ka and the coefficients of b are absolutely less than 2^kb, then     the coefficients of ab are absolutely less than     (min(na,nb)+1)2^{ka+kb} <= 2^bound. */  long bound = 2 + NumBits(min(na, nb)) + MaxBits(a) + MaxBits(b);  /* Let r be minimal so that mr > bound */  long r = (bound >> l) + 1;  long mr = r << l;  /* p := 2^{mr}+1 */  ZZ p;  set(p);  LeftShift(p, p, mr);  add(p, p, 1);  /* Make coefficients of a and b positive */  vec_ZZ aa, bb;  aa.SetLength(m2);  bb.SetLength(m2);  long i;  for (i = 0; i <= deg(a); i++) {    if (sign(a.rep[i]) >= 0) {      aa[i] = a.rep[i];    } else {      add(aa[i], a.rep[i], p);    }  }  for (i = 0; i <= deg(b); i++) {    if (sign(b.rep[i]) >= 0) {      bb[i] = b.rep[i];    } else {      add(bb[i], b.rep[i], p);    }  }  /* 2m-point FFT's mod p */  fft(aa, r, l + 1, p, mr);  fft(bb, r, l + 1, p, mr);  /* Pointwise multiplication aa := aa * bb mod p */  ZZ tmp, ai;  for (i = 0; i < m2; i++) {    mul(ai, aa[i], bb[i]);    if (NumBits(ai) > mr) {      RightShift(tmp, ai, mr);      trunc(ai, ai, mr);      sub(ai, ai, tmp);      if (sign(ai) < 0) {	add(ai, ai, p);      }    }    aa[i] = ai;  }    ifft(aa, r, l + 1, p, mr);  /* Retrieve c, dividing by 2m, and subtracting p where necessary */  c.rep.SetLength(n + 1);  for (i = 0; i <= n; i++) {    ai = aa[i];    ZZ& ci = c.rep[i];    if (!IsZero(ai)) {      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */      LeftRotate(ai, ai, mr - l - 1, p, mr);      sub(tmp, p, ai);      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */	negate(ci, ai); /* ci = -ai = ci - p */      }      else        ci = tmp;    }     else       clear(ci);  }}// SSRatio computes how much bigger the SS moduls must be// to accomodate the necessary roots of unity.// This is useful in determining algorithm crossover points.double SSRatio(long na, long maxa, long nb, long maxb){  if (na <= 0 || nb <= 0) return 0;  long n = na + nb; /* degree of the product */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long bound = 2 + NumBits(min(na, nb)) + maxa + maxb;  long r = (bound >> l) + 1;  long mr = r << l;  return double(mr + 1)/double(bound);}void HomMul(ZZX& x, const ZZX& a, const ZZX& b){   if (&a == &b) {      HomSqr(x, a);      return;   }   long da = deg(a);   long db = deg(b);   if (da < 0 || db < 0) {      clear(x);      return;   }   long bound = 2 + NumBits(min(da, db)+1) + MaxBits(a) + MaxBits(b);   ZZ prod;   set(prod);   long i, nprimes;   zz_pBak bak;   bak.save();   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {      if (nprimes >= NumFFTPrimes)         zz_p::FFTInit(nprimes);      mul(prod, prod, FFTPrime[nprimes]);   }   ZZ coeff;   ZZ t1;   long tt;   vec_ZZ c;   c.SetLength(da+db+1);   long j;   for (i = 0; i < nprimes; i++) {      zz_p::FFTInit(i);      long p = zz_p::modulus();      div(t1, prod, p);      tt = rem(t1, p);      tt = InvMod(tt, p);      mul(coeff, t1, tt);      zz_pX A, B, C;      conv(A, a);      conv(B, b);      mul(C, A, B);      long m = deg(C);      for (j = 0; j <= m; j++) {         /* c[j] += coeff*rep(C.rep[j]) */         mul(t1, coeff, rep(C.rep[j]));         add(c[j], c[j], t1);       }   }   x.rep.SetLength(da+db+1);   ZZ prod2;   RightShift(prod2, prod, 1);   for (j = 0; j <= da+db; j++) {      rem(t1, c[j], prod);      if (t1 > prod2)         sub(x.rep[j], t1, prod);      else         x.rep[j] = t1;   }   x.normalize();   bak.restore();}staticlong MaxSize(const ZZX& a){   long res = 0;   long n = a.rep.length();   long i;   for (i = 0; i < n; i++) {      long t = a.rep[i].size();      if (t > res)         res = t;   }   return res;}void mul(ZZX& c, const ZZX& a, const ZZX& b){   if (IsZero(a) || IsZero(b)) {      clear(c);      return;   }   if (&a == &b) {      sqr(c, a);      return;   }   long maxa = MaxSize(a);   long maxb = MaxSize(b);   long k = min(maxa, maxb);   long s = min(deg(a), deg(b)) + 1;   if (s == 1 || (k == 1 && s < 40) || (k == 2 && s < 20) ||                  (k == 3 && s < 10)) {      PlainMul(c, a, b);      return;   }   if (s < 80 || (k < 30 && s < 150))  {      KarMul(c, a, b);      return;   }   if (maxa + maxb >= 40 &&        SSRatio(deg(a), MaxBits(a), deg(b), MaxBits(b)) < 1.75)       SSMul(c, a, b);   else      HomMul(c, a, b);}void SSSqr(ZZX& c, const ZZX& a){  long na = deg(a);  if (na <= 0) {    PlainSqr(c, a);    return;  }  long n = na + na; /* degree of the product */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */  long bound = 2 + NumBits(na) + 2*MaxBits(a);  long r = (bound >> l) + 1;  long mr = r << l;  /* p := 2^{mr}+1 */  ZZ p;  set(p);  LeftShift(p, p, mr);  add(p, p, 1);  vec_ZZ aa;  aa.SetLength(m2);  long i;  for (i = 0; i <= deg(a); i++) {    if (sign(a.rep[i]) >= 0) {      aa[i] = a.rep[i];    } else {      add(aa[i], a.rep[i], p);    }  }  /* 2m-point FFT's mod p */  fft(aa, r, l + 1, p, mr);  /* Pointwise multiplication aa := aa * aa mod p */  ZZ tmp, ai;  for (i = 0; i < m2; i++) {    sqr(ai, aa[i]);    if (NumBits(ai) > mr) {      RightShift(tmp, ai, mr);      trunc(ai, ai, mr);      sub(ai, ai, tmp);      if (sign(ai) < 0) {	add(ai, ai, p);      }    }    aa[i] = ai;  }    ifft(aa, r, l + 1, p, mr);  ZZ ci;  /* Retrieve c, dividing by 2m, and subtracting p where necessary */  c.rep.SetLength(n + 1);  for (i = 0; i <= n; i++) {    ai = aa[i];    ZZ& ci = c.rep[i];    if (!IsZero(ai)) {      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */      LeftRotate(ai, ai, mr - l - 1, p, mr);      sub(tmp, p, ai);      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */	negate(ci, ai); /* ci = -ai = ci - p */      }      else        ci = tmp;    }     else       clear(ci);  }}void HomSqr(ZZX& x, const ZZX& a){   long da = deg(a);   if (da < 0) {      clear(x);      return;   }   long bound = 2 + NumBits(da+1) + 2*MaxBits(a);   ZZ prod;   set(prod);   long i, nprimes;   zz_pBak bak;   bak.save();   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {      if (nprimes >= NumFFTPrimes)         zz_p::FFTInit(nprimes);      mul(prod, prod, FFTPrime[nprimes]);   }   ZZ coeff;   ZZ t1;   long tt;   vec_ZZ c;   c.SetLength(da+da+1);   long j;   for (i = 0; i < nprimes; i++) {      zz_p::FFTInit(i);      long p = zz_p::modulus();      div(t1, prod, p);      tt = rem(t1, p);      tt = InvMod(tt, p);      mul(coeff, t1, tt);      zz_pX A, C;      conv(A, a);      sqr(C, A);      long m = deg(C);      for (j = 0; j <= m; j++) {         /* c[j] += coeff*rep(C.rep[j]) */         mul(t1, coeff, rep(C.rep[j]));         add(c[j], c[j], t1);       }   }   x.rep.SetLength(da+da+1);   ZZ prod2;   RightShift(prod2, prod, 1);   for (j = 0; j <= da+da; j++) {      rem(t1, c[j], prod);      if (t1 > prod2)         sub(x.rep[j], t1, prod);      else         x.rep[j] = t1;   }   x.normalize();   bak.restore();}void sqr(ZZX& c, const ZZX& a){   if (IsZero(a)) {      clear(c);      return;   }   long maxa = MaxSize(a);   long k = maxa;   long s = deg(a) + 1;   if (s == 1 || (k == 1 && s < 50) || (k == 2 && s < 25) ||                  (k == 3 && s < 25) || (k == 4 && s < 10)) {      PlainSqr(c, a);      return;   }   if (s < 80 || (k < 30 && s < 150))  {      KarSqr(c, a);      return;   }   long mba = MaxBits(a);      if (2*maxa >= 40 &&        SSRatio(deg(a), mba, deg(a), mba) < 1.75)       SSSqr(c, a);   else      HomSqr(c, a);}void mul(ZZX& x, const ZZX& a, const ZZ& b){   ZZ t;   long i, da;   const ZZ *ap;   ZZ* xp;   if (IsZero(b)) {      clear(x);      return;   }   t = b;   da = deg(a);   x.rep.SetLength(da+1);   ap = a.rep.elts();   xp = x.rep.elts();   for (i = 0; i <= da; i++)       mul(xp[i], ap[i], t);}void mul(ZZX& x, const ZZX& a, long b){   long i, da;   const ZZ *ap;   ZZ* xp;   if (b == 0) {      clear(x);      return;   }   da = deg(a);   x.rep.SetLength(da+1);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久精品免费看| av不卡免费在线观看| 国产精品毛片久久久久久| 欧美色综合天天久久综合精品| 狠狠狠色丁香婷婷综合久久五月| 一区二区成人在线| 国产精品久久久久久久久动漫 | 99视频一区二区三区| 日韩经典中文字幕一区| 亚洲少妇30p| 国产午夜精品理论片a级大结局| 欧美老人xxxx18| 日本韩国精品在线| 成人理论电影网| 国产精品伊人色| 久久99热狠狠色一区二区| 亚洲成人自拍一区| 亚洲另类在线制服丝袜| 国产精品久久久久久久久图文区 | 麻豆精品在线播放| 亚洲成a人在线观看| 亚洲黄色尤物视频| 亚洲少妇中出一区| 亚洲免费资源在线播放| 亚洲欧洲三级电影| 亚洲国产精品成人久久综合一区| 欧美精品一区二区三区蜜桃视频| 日韩欧美在线网站| 欧美一区二区精品在线| 欧美久久久久免费| 91麻豆精品国产无毒不卡在线观看 | 亚洲特级片在线| 国产精品九色蝌蚪自拍| 国产精品美女一区二区三区| 国产清纯美女被跳蛋高潮一区二区久久w | 色综合久久中文字幕| caoporn国产精品| av一区二区三区在线| www.欧美精品一二区| 波多野结衣中文字幕一区二区三区| 国产成人精品影视| 懂色av一区二区三区免费观看| 国产精品正在播放| 暴力调教一区二区三区| 色综合亚洲欧洲| 在线欧美一区二区| 欧美三级电影在线观看| 欧美日韩国产高清一区二区| 欧美日韩免费在线视频| 欧美一级午夜免费电影| 久久久久久一二三区| 亚洲国产精品国自产拍av| 亚洲情趣在线观看| 亚洲电影你懂得| 美女诱惑一区二区| 国产福利电影一区二区三区| 国产成人精品一区二| 91老师片黄在线观看| 欧美日韩在线一区二区| 日韩三级.com| 国产日本亚洲高清| 一区二区三区欧美视频| 日本不卡视频一二三区| 国产精品一二一区| 91浏览器入口在线观看| 日韩一区二区在线观看视频| 久久网这里都是精品| 亚洲视频图片小说| 美女视频免费一区| fc2成人免费人成在线观看播放| 欧美三级视频在线观看| 欧美一级理论片| 国产精品不卡在线| 人人精品人人爱| 成人午夜视频福利| 91精品国产一区二区人妖| 欧美国产精品一区| 日韩综合小视频| av午夜精品一区二区三区| 欧美精品在线一区二区| 国产精品毛片无遮挡高清| 午夜精品福利久久久| 国产成人免费9x9x人网站视频| 91精品国产91久久久久久一区二区 | 日日骚欧美日韩| 国产成人夜色高潮福利影视| 欧美日韩一级片在线观看| 久久伊人中文字幕| 亚洲一区二区四区蜜桃| 国产精品亚洲第一区在线暖暖韩国| 在线一区二区三区四区五区| 欧美精品一区二区三区视频| 亚洲国产精品人人做人人爽| 国产成人一级电影| 日韩午夜精品视频| 亚洲丝袜美腿综合| 国产成人欧美日韩在线电影| 666欧美在线视频| 综合在线观看色| 国产盗摄女厕一区二区三区| 欧美精品在线一区二区三区| 亚洲精品中文字幕乱码三区| 国产精品系列在线播放| 欧美一区二区三区四区在线观看| 亚洲欧美日韩在线| 成人性生交大片免费| 欧美va在线播放| 午夜精品久久久久久不卡8050| 99热国产精品| 日本一区二区三区四区在线视频| 日本亚洲欧美天堂免费| 欧美日精品一区视频| 悠悠色在线精品| 91丨九色丨黑人外教| 中文字幕精品三区| 国产一区二区精品久久99| 欧美不卡一区二区| 蜜桃91丨九色丨蝌蚪91桃色| 欧美美女直播网站| 天天色综合成人网| 欧美日韩在线精品一区二区三区激情| 国产精品视频九色porn| 国精产品一区一区三区mba视频| 3d动漫精品啪啪一区二区竹菊| 亚洲国产日日夜夜| 欧美性受xxxx黑人xyx| 玉米视频成人免费看| 91黄色激情网站| 亚洲一区欧美一区| 欧洲人成人精品| 亚洲一区二区三区四区在线| 色老汉一区二区三区| 亚洲综合色在线| 欧美日韩国产首页| 日韩av不卡在线观看| 欧美一级夜夜爽| 精品亚洲国内自在自线福利| 欧美r级在线观看| 国产精一区二区三区| 欧美韩国一区二区| 99久久综合狠狠综合久久| 亚洲欧洲在线观看av| 一本色道久久综合亚洲精品按摩| 一区二区三区鲁丝不卡| 欧美日韩精品电影| 久久精品免费看| 久久久久久麻豆| 94-欧美-setu| 午夜欧美2019年伦理| 欧美成人一区二区三区在线观看 | 国产精品久久久久一区二区三区| 成人开心网精品视频| 亚洲另类在线一区| 欧美日韩国产一二三| 久久99精品视频| 国产精品剧情在线亚洲| 色狠狠桃花综合| 美腿丝袜亚洲一区| 国产精品视频看| 欧美日韩国产片| 国产美女在线观看一区| 亚洲天堂福利av| 51精品久久久久久久蜜臀| 国产激情91久久精品导航| 亚洲精品欧美激情| 日韩欧美高清一区| 97se狠狠狠综合亚洲狠狠| 天天色天天爱天天射综合| 国产视频一区不卡| 91福利资源站| 黄网站免费久久| 一个色综合av| 精品欧美一区二区久久| 91看片淫黄大片一级| 日韩制服丝袜av| 国产欧美日韩在线观看| 欧美人动与zoxxxx乱| 国产v综合v亚洲欧| 日韩不卡免费视频| 亚洲欧洲韩国日本视频| 欧美一二区视频| 91国偷自产一区二区三区成为亚洲经典| 日本sm残虐另类| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 91麻豆精品国产91久久久久 | 日韩午夜在线观看视频| 97se亚洲国产综合自在线观| 另类小说一区二区三区| 综合分类小说区另类春色亚洲小说欧美| 欧美日韩国产成人在线91| 成人午夜免费视频| 久久av资源网| 亚洲午夜久久久久久久久电影网| 久久嫩草精品久久久久| 欧美日韩中字一区| 99久久伊人久久99| 国产伦精品一区二区三区视频青涩| 亚洲成a人片在线观看中文| 国产精品国产三级国产普通话三级 | 亚洲一区免费视频|