?? printroc.m
字號:
function printroc(in,B,validation,tB,outfile,betaT,net,versn)% WBL 25 Sep 2002 Calculate and save ROC of boosted Matlab MLP Neural Network%version = '$Revision: 1.6 $'; %$Date: 2002/10/31 11:20:41 $%WBL 31 Oct 2002 Based on printroc2.m r1.5%WBL 25 Sep 2002 Based on printroc.m r1.1fprintf(outfile,'#P450bskel.m "%s" train %d, ver %d %s\n',versn,size(B,2),size(tB,1),datestr(now));tmax=size(net,2)for t=1:tmax % use two output neurons. %S1 = 2; % expand B into targets. Each element becomes 2 element row, % element coresponding to B(i) is one all others are zero. %S2 = 2; fprintf(outfile,'\n#%3d ',t); net_tr = sim(net{t},in); [area,roc]=errors(net_tr,B,outfile); fprintf(outfile,'%f train\n',area); dumproc(t,roc,outfile); fprintf(outfile,'\n#%3d.1 ',t); net_tr = sim(net{t},validation.P); [area,roc]=errors(net_tr,tB',outfile); fprintf(outfile,'%f ver\n',area); dumproc(t+0.1,roc,outfile);end fprintf(outfile,'\n#%3d ',-1);[area,net_tr,roc] = ensemble(tmax,betaT,net,in, B, outfile);fprintf(outfile,'ensemble of %d train AUROC %f\n',tmax,area);dumproc(-1,roc,outfile); fprintf(outfile,'\n#%3d ',-1.1);[area,net_vr,roc] = ensemble(tmax,betaT,net,validation.P,tB',outfile);fprintf(outfile,'ensemble of %d ver AUROC %f\n',tmax,area);dumproc(-1.1,roc,outfile);%fclose (outfile);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -