?? cmplxl.c
字號:
/* cmplxl.c * * Complex number arithmetic * * * * SYNOPSIS: * * typedef struct { * long double r; real part * long double i; imaginary part * }cmplxl; * * cmplxl *a, *b, *c; * * caddl( a, b, c ); c = b + a * csubl( a, b, c ); c = b - a * cmull( a, b, c ); c = b * a * cdivl( a, b, c ); c = b / a * cnegl( c ); c = -c * cmovl( b, c ); c = b * * * * DESCRIPTION: * * Addition: * c.r = b.r + a.r * c.i = b.i + a.i * * Subtraction: * c.r = b.r - a.r * c.i = b.i - a.i * * Multiplication: * c.r = b.r * a.r - b.i * a.i * c.i = b.r * a.i + b.i * a.r * * Division: * d = a.r * a.r + a.i * a.i * c.r = (b.r * a.r + b.i * a.i)/d * c.i = (b.i * a.r - b.r * a.i)/d * ACCURACY: * * In DEC arithmetic, the test (1/z) * z = 1 had peak relative * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had * peak relative error 8.3e-17, rms 2.1e-17. * * Tests in the rectangle {-10,+10}: * Relative error: * arithmetic function # trials peak rms * DEC cadd 10000 1.4e-17 3.4e-18 * IEEE cadd 100000 1.1e-16 2.7e-17 * DEC csub 10000 1.4e-17 4.5e-18 * IEEE csub 100000 1.1e-16 3.4e-17 * DEC cmul 3000 2.3e-17 8.7e-18 * IEEE cmul 100000 2.1e-16 6.9e-17 * DEC cdiv 18000 4.9e-17 1.3e-17 * IEEE cdiv 100000 3.7e-16 1.1e-16 *//* cmplx.c * complex number arithmetic *//*Cephes Math Library Release 2.3: March, 1995Copyright 1984, 1995 by Stephen L. Moshier*/#include <math.h>/*typedef struct { long double r; long double i; }cmplxl;*/#ifdef ANSIPROTextern long double fabsl ( long double );extern long double cabsl ( cmplxl * );extern long double sqrtl ( long double );extern long double atan2l ( long double, long double );extern long double cosl ( long double );extern long double sinl ( long double );extern long double frexpl ( long double, int * );extern long double ldexpl ( long double, int );extern int isnanl ( long double );void cdivl ( cmplxl *, cmplxl *, cmplxl * );void caddl ( cmplxl *, cmplxl *, cmplxl * );#elselong double fabsl(), cabsl(), sqrtl(), atan2l(), cosl(), sinl();long double frexpl(), ldexpl();int isnanl();void cdivl(), caddl();#endifextern double MAXNUML, MACHEPL, PIL, PIO2L, INFINITYL, NANL;cmplx czerol = {0.0L, 0.0L};cmplx conel = {1.0L, 0.0L};/* c = b + a */void caddl( a, b, c )register cmplxl *a, *b;cmplxl *c;{c->r = b->r + a->r;c->i = b->i + a->i;}/* c = b - a */void csubl( a, b, c )register cmplxl *a, *b;cmplxl *c;{c->r = b->r - a->r;c->i = b->i - a->i;}/* c = b * a */void cmull( a, b, c )register cmplxl *a, *b;cmplxl *c;{long double y;y = b->r * a->r - b->i * a->i;c->i = b->r * a->i + b->i * a->r;c->r = y;}/* c = b / a */void cdivl( a, b, c )register cmplxl *a, *b;cmplxl *c;{long double y, p, q, w;y = a->r * a->r + a->i * a->i;p = b->r * a->r + b->i * a->i;q = b->i * a->r - b->r * a->i;if( y < 1.0L ) { w = MAXNUML * y; if( (fabsl(p) > w) || (fabsl(q) > w) || (y == 0.0L) ) { c->r = INFINITYL; c->i = INFINITYL; mtherr( "cdivl", OVERFLOW ); return; } }c->r = p/y;c->i = q/y;}/* b = a Caution, a `short' is assumed to be 16 bits wide. */void cmovl( a, b )void *a, *b;{register short *pa, *pb;int i;pa = (short *) a;pb = (short *) b;i = 16;do *pb++ = *pa++;while( --i );}void cnegl( a )register cmplxl *a;{a->r = -a->r;a->i = -a->i;}/* cabsl() * * Complex absolute value * * * * SYNOPSIS: * * long double cabsl(); * cmplxl z; * long double a; * * a = cabs( &z ); * * * * DESCRIPTION: * * * If z = x + iy * * then * * a = sqrt( x**2 + y**2 ). * * Overflow and underflow are avoided by testing the magnitudes * of x and y before squaring. If either is outside half of * the floating point full scale range, both are rescaled. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -30,+30 30000 3.2e-17 9.2e-18 * IEEE -10,+10 100000 2.7e-16 6.9e-17 *//*Cephes Math Library Release 2.1: January, 1989Copyright 1984, 1987, 1989 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//*typedef struct { long double r; long double i; }cmplxl;*/#ifdef UNK#define PRECL 32#define MAXEXPL 16384#define MINEXPL -16384#endif#ifdef IBMPC#define PRECL 32#define MAXEXPL 16384#define MINEXPL -16384#endif#ifdef MIEEE#define PRECL 32#define MAXEXPL 16384#define MINEXPL -16384#endiflong double cabsl( z )register cmplxl *z;{long double x, y, b, re, im;int ex, ey, e;#ifdef INFINITIES/* Note, cabs(INFINITY,NAN) = INFINITY. */if( z->r == INFINITYL || z->i == INFINITYL || z->r == -INFINITYL || z->i == -INFINITYL ) return( INFINITYL );#endif#ifdef NANSif( isnanl(z->r) ) return(z->r);if( isnanl(z->i) ) return(z->i);#endifre = fabsl( z->r );im = fabsl( z->i );if( re == 0.0 ) return( im );if( im == 0.0 ) return( re );/* Get the exponents of the numbers */x = frexpl( re, &ex );y = frexpl( im, &ey );/* Check if one number is tiny compared to the other */e = ex - ey;if( e > PRECL ) return( re );if( e < -PRECL ) return( im );/* Find approximate exponent e of the geometric mean. */e = (ex + ey) >> 1;/* Rescale so mean is about 1 */x = ldexpl( re, -e );y = ldexpl( im, -e ); /* Hypotenuse of the right triangle */b = sqrtl( x * x + y * y );/* Compute the exponent of the answer. */y = frexpl( b, &ey );ey = e + ey;/* Check it for overflow and underflow. */if( ey > MAXEXPL ) { mtherr( "cabsl", OVERFLOW ); return( INFINITYL ); }if( ey < MINEXPL ) return(0.0L);/* Undo the scaling */b = ldexpl( b, e );return( b );}/* csqrtl() * * Complex square root * * * * SYNOPSIS: * * void csqrtl(); * cmplxl z, w; * * csqrtl( &z, &w ); * * * * DESCRIPTION: * * * If z = x + iy, r = |z|, then * * 1/2 * Im w = [ (r - x)/2 ] , * * Re w = y / 2 Im w. * * * Note that -w is also a square root of z. The root chosen * is always in the upper half plane. * * Because of the potential for cancellation error in r - x, * the result is sharpened by doing a Heron iteration * (see sqrt.c) in complex arithmetic. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 25000 3.2e-17 9.6e-18 * IEEE -10,+10 100000 3.2e-16 7.7e-17 * * 2 * Also tested by csqrt( z ) = z, and tested by arguments * close to the real axis. */void csqrtl( z, w )cmplxl *z, *w;{cmplxl q, s;long double x, y, r, t;x = z->r;y = z->i;if( y == 0.0L ) { if( x < 0.0L ) { w->r = 0.0L; w->i = sqrtl(-x); return; } else { w->r = sqrtl(x); w->i = 0.0L; return; } }if( x == 0.0L ) { r = fabsl(y); r = sqrtl(0.5L*r); if( y > 0.0L ) w->r = r; else w->r = -r; w->i = r; return; }/* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... . * The relative error in the first term is approximately y^2/12x^2 . */if( (fabsl(y) < 2.e-4L * fabsl(x)) && (x > 0) ) { t = 0.25L*y*(y/x); }else { r = cabsl(z); t = 0.5L*(r - x); }r = sqrtl(t);q.i = r;q.r = y/(2.0L*r);/* Heron iteration in complex arithmetic */cdivl( &q, z, &s );caddl( &q, &s, w );w->r *= 0.5L;w->i *= 0.5L;cdivl( &q, z, &s );caddl( &q, &s, w );w->r *= 0.5L;w->i *= 0.5L;}long double hypotl( x, y )long double x, y;{cmplxl z;z.r = x;z.i = y;return( cabsl(&z) );}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -