?? cmplxf.c
字號:
/* cmplxf.c * * Complex number arithmetic * * * * SYNOPSIS: * * typedef struct { * float r; real part * float i; imaginary part * }cmplxf; * * cmplxf *a, *b, *c; * * caddf( a, b, c ); c = b + a * csubf( a, b, c ); c = b - a * cmulf( a, b, c ); c = b * a * cdivf( a, b, c ); c = b / a * cnegf( c ); c = -c * cmovf( b, c ); c = b * * * * DESCRIPTION: * * Addition: * c.r = b.r + a.r * c.i = b.i + a.i * * Subtraction: * c.r = b.r - a.r * c.i = b.i - a.i * * Multiplication: * c.r = b.r * a.r - b.i * a.i * c.i = b.r * a.i + b.i * a.r * * Division: * d = a.r * a.r + a.i * a.i * c.r = (b.r * a.r + b.i * a.i)/d * c.i = (b.i * a.r - b.r * a.i)/d * ACCURACY: * * In DEC arithmetic, the test (1/z) * z = 1 had peak relative * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had * peak relative error 8.3e-17, rms 2.1e-17. * * Tests in the rectangle {-10,+10}: * Relative error: * arithmetic function # trials peak rms * IEEE cadd 30000 5.9e-8 2.6e-8 * IEEE csub 30000 6.0e-8 2.6e-8 * IEEE cmul 30000 1.1e-7 3.7e-8 * IEEE cdiv 30000 2.1e-7 5.7e-8 *//* cmplx.c * complex number arithmetic *//*Cephes Math Library Release 2.1: December, 1988Copyright 1984, 1987, 1988 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF, MACHEPF, PIF, PIO2F;#define fabsf(x) ( (x) < 0 ? -(x) : (x) )#ifdef ANSICfloat sqrtf(float), frexpf(float, int *);float ldexpf(float, int);float cabsf(cmplxf *), atan2f(float, float), cosf(float), sinf(float);#elsefloat sqrtf(), frexpf(), ldexpf();float cabsf(), atan2f(), cosf(), sinf();#endif/*typedef struct { float r; float i; }cmplxf;*/cmplxf czerof = {0.0, 0.0};extern cmplxf czerof;cmplxf conef = {1.0, 0.0};extern cmplxf conef;/* c = b + a */void caddf( a, b, c )register cmplxf *a, *b;cmplxf *c;{c->r = b->r + a->r;c->i = b->i + a->i;}/* c = b - a */void csubf( a, b, c )register cmplxf *a, *b;cmplxf *c;{c->r = b->r - a->r;c->i = b->i - a->i;}/* c = b * a */void cmulf( a, b, c )register cmplxf *a, *b;cmplxf *c;{register float y;y = b->r * a->r - b->i * a->i;c->i = b->r * a->i + b->i * a->r;c->r = y;}/* c = b / a */void cdivf( a, b, c )register cmplxf *a, *b;cmplxf *c;{float y, p, q, w;y = a->r * a->r + a->i * a->i;p = b->r * a->r + b->i * a->i;q = b->i * a->r - b->r * a->i;if( y < 1.0f ) { w = MAXNUMF * y; if( (fabsf(p) > w) || (fabsf(q) > w) || (y == 0.0f) ) { c->r = MAXNUMF; c->i = MAXNUMF; mtherr( "cdivf", OVERFLOW ); return; } }c->r = p/y;c->i = q/y;}/* b = a */void cmovf( a, b )register short *a, *b;{int i;i = 8;do *b++ = *a++;while( --i );}void cnegf( a )register cmplxf *a;{a->r = -a->r;a->i = -a->i;}/* cabsf() * * Complex absolute value * * * * SYNOPSIS: * * float cabsf(); * cmplxf z; * float a; * * a = cabsf( &z ); * * * * DESCRIPTION: * * * If z = x + iy * * then * * a = sqrt( x**2 + y**2 ). * * Overflow and underflow are avoided by testing the magnitudes * of x and y before squaring. If either is outside half of * the floating point full scale range, both are rescaled. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.2e-7 3.4e-8 *//*Cephes Math Library Release 2.1: January, 1989Copyright 1984, 1987, 1989 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//*typedef struct { float r; float i; }cmplxf;*//* square root of max and min numbers */#define SMAX 1.3043817825332782216E+19#define SMIN 7.6664670834168704053E-20#define PREC 12#define MAXEXPF 128#define SMAXT (2.0f * SMAX)#define SMINT (0.5f * SMIN)float cabsf( z )register cmplxf *z;{float x, y, b, re, im;int ex, ey, e;re = fabsf( z->r );im = fabsf( z->i );if( re == 0.0f ) { return( im ); }if( im == 0.0f ) { return( re ); }/* Get the exponents of the numbers */x = frexpf( re, &ex );y = frexpf( im, &ey );/* Check if one number is tiny compared to the other */e = ex - ey;if( e > PREC ) return( re );if( e < -PREC ) return( im );/* Find approximate exponent e of the geometric mean. */e = (ex + ey) >> 1;/* Rescale so mean is about 1 */x = ldexpf( re, -e );y = ldexpf( im, -e ); /* Hypotenuse of the right triangle */b = sqrtf( x * x + y * y );/* Compute the exponent of the answer. */y = frexpf( b, &ey );ey = e + ey;/* Check it for overflow and underflow. */if( ey > MAXEXPF ) { mtherr( "cabsf", OVERFLOW ); return( MAXNUMF ); }if( ey < -MAXEXPF ) return(0.0f);/* Undo the scaling */b = ldexpf( b, e );return( b );}/* csqrtf() * * Complex square root * * * * SYNOPSIS: * * void csqrtf(); * cmplxf z, w; * * csqrtf( &z, &w ); * * * * DESCRIPTION: * * * If z = x + iy, r = |z|, then * * 1/2 * Im w = [ (r - x)/2 ] , * * Re w = y / 2 Im w. * * * Note that -w is also a square root of z. The solution * reported is always in the upper half plane. * * Because of the potential for cancellation error in r - x, * the result is sharpened by doing a Heron iteration * (see sqrt.c) in complex arithmetic. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 100000 1.8e-7 4.2e-8 * */void csqrtf( z, w )cmplxf *z, *w;{cmplxf q, s;float x, y, r, t;x = z->r;y = z->i;if( y == 0.0f ) { if( x < 0.0f ) { w->r = 0.0f; w->i = sqrtf(-x); return; } else { w->r = sqrtf(x); w->i = 0.0f; return; } }if( x == 0.0f ) { r = fabsf(y); r = sqrtf(0.5f*r); if( y > 0 ) w->r = r; else w->r = -r; w->i = r; return; }/* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... . * The relative error in the first term is approximately y^2/12x^2 . */if( (fabsf(y) < fabsf(0.015f*x)) && (x > 0) ) { t = 0.25f*y*(y/x); }else { r = cabsf(z); t = 0.5f*(r - x); }r = sqrtf(t);q.i = r;q.r = 0.5f*y/r;/* Heron iteration in complex arithmetic: * q = (q + z/q)/2 */cdivf( &q, z, &s );caddf( &q, &s, w );w->r *= 0.5f;w->i *= 0.5f;}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -