?? euclid.c
字號:
/* euclid.c * * Rational arithmetic routines * * * * SYNOPSIS: * * * typedef struct * { * double n; numerator * double d; denominator * }fract; * * radd( a, b, c ) c = b + a * rsub( a, b, c ) c = b - a * rmul( a, b, c ) c = b * a * rdiv( a, b, c ) c = b / a * euclid( &n, &d ) Reduce n/d to lowest terms, * return greatest common divisor. * * Arguments of the routines are pointers to the structures. * The double precision numbers are assumed, without checking, * to be integer valued. Overflow conditions are reported. */ #include <math.h>#ifdef ANSIPROTextern double fabs ( double );extern double floor ( double );double euclid( double *, double * );#elsedouble fabs(), floor(), euclid();#endifextern double MACHEP;#define BIG (1.0/MACHEP)typedef struct { double n; /* numerator */ double d; /* denominator */ }fract;/* Add fractions. */void radd( f1, f2, f3 )fract *f1, *f2, *f3;{double gcd, d1, d2, gcn, n1, n2;n1 = f1->n;d1 = f1->d;n2 = f2->n;d2 = f2->d;if( n1 == 0.0 ) { f3->n = n2; f3->d = d2; return; }if( n2 == 0.0 ) { f3->n = n1; f3->d = d1; return; }gcd = euclid( &d1, &d2 ); /* common divisors of denominators */gcn = euclid( &n1, &n2 ); /* common divisors of numerators *//* Note, factoring the numerators * makes overflow slightly less likely. */f3->n = ( n1 * d2 + n2 * d1) * gcn;f3->d = d1 * d2 * gcd;euclid( &f3->n, &f3->d );}/* Subtract fractions. */void rsub( f1, f2, f3 )fract *f1, *f2, *f3;{double gcd, d1, d2, gcn, n1, n2;n1 = f1->n;d1 = f1->d;n2 = f2->n;d2 = f2->d;if( n1 == 0.0 ) { f3->n = n2; f3->d = d2; return; }if( n2 == 0.0 ) { f3->n = -n1; f3->d = d1; return; }gcd = euclid( &d1, &d2 );gcn = euclid( &n1, &n2 );f3->n = (n2 * d1 - n1 * d2) * gcn;f3->d = d1 * d2 * gcd;euclid( &f3->n, &f3->d );}/* Multiply fractions. */void rmul( ff1, ff2, ff3 )fract *ff1, *ff2, *ff3;{double d1, d2, n1, n2;n1 = ff1->n;d1 = ff1->d;n2 = ff2->n;d2 = ff2->d;if( (n1 == 0.0) || (n2 == 0.0) ) { ff3->n = 0.0; ff3->d = 1.0; return; }euclid( &n1, &d2 ); /* cross cancel common divisors */euclid( &n2, &d1 );ff3->n = n1 * n2;ff3->d = d1 * d2;/* Report overflow. */if( (fabs(ff3->n) >= BIG) || (fabs(ff3->d) >= BIG) ) { mtherr( "rmul", OVERFLOW ); return; }/* euclid( &ff3->n, &ff3->d );*/}/* Divide fractions. */void rdiv( ff1, ff2, ff3 )fract *ff1, *ff2, *ff3;{double d1, d2, n1, n2;n1 = ff1->d; /* Invert ff1, then multiply */d1 = ff1->n;if( d1 < 0.0 ) { /* keep denominator positive */ n1 = -n1; d1 = -d1; }n2 = ff2->n;d2 = ff2->d;if( (n1 == 0.0) || (n2 == 0.0) ) { ff3->n = 0.0; ff3->d = 1.0; return; }euclid( &n1, &d2 ); /* cross cancel any common divisors */euclid( &n2, &d1 );ff3->n = n1 * n2;ff3->d = d1 * d2;/* Report overflow. */if( (fabs(ff3->n) >= BIG) || (fabs(ff3->d) >= BIG) ) { mtherr( "rdiv", OVERFLOW ); return; }/* euclid( &ff3->n, &ff3->d );*/}/* Euclidean algorithm * reduces fraction to lowest terms, * returns greatest common divisor. */double euclid( num, den )double *num, *den;{double n, d, q, r;n = *num; /* Numerator. */d = *den; /* Denominator. *//* Make numbers positive, locally. */if( n < 0.0 ) n = -n;if( d < 0.0 ) d = -d;/* Abort if numbers are too big for integer arithmetic. */if( (n >= BIG) || (d >= BIG) ) { mtherr( "euclid", OVERFLOW ); return(1.0); }/* Divide by zero, gcd = 1. */if(d == 0.0) return( 1.0 );/* Zero. Return 0/1, gcd = denominator. */if(n == 0.0) {/* if( *den < 0.0 ) *den = -1.0; else *den = 1.0;*/ *den = 1.0; return( d ); }while( d > 0.5 ) {/* Find integer part of n divided by d. */ q = floor( n/d );/* Find remainder after dividing n by d. */ r = n - d * q;/* The next fraction is d/r. */ n = d; d = r; }if( n < 0.0 ) mtherr( "euclid", UNDERFLOW );*num /= n;*den /= n;return( n );}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -