?? popula~1.c
字號:
/*
SGPC: Simple Genetic Programming in C
(c) 1993 by Walter Alden Tackett and Aviram Carmi
This code and documentation is copyrighted and is not in the public domain.
All rights reserved.
- This notice may not be removed or altered.
- You may not try to make money by distributing the package or by using the
process that the code creates.
- You may not distribute modified versions without clearly documenting your
changes and notifying the principal author.
- The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.
- Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users ever read
sources, credits must appear in the documentation.
- The authors are not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.
If you make changes to the code, or have suggestions for changes,
let us know! (gpc@ipld01.hac.com)
*/
#ifndef lint
static char populations_c_rcsid[]="$Id: populations.c,v 2.8 1993/04/22 07:39:12 gpc-avc Exp gpc-avc $";
#endif
/*
*
* $Log: populations.c,v $
* Revision 2.8 1993/04/22 07:39:12 gpc-avc
* Removed old log messages
*
* Revision 2.7 1993/04/14 04:59:00 gpc-avc
* Fixed bug of not initializing fraction inside the for loop
*
*
*/
#include <stdio.h>
#include <malloc.h>
#include <errno.h>
#include <values.h>
#include "gpc.h"
#ifdef ANSI_FUNC
VOID allocate_populations(
int numpops,
pop_struct *pop
)
#else
VOID allocate_populations(numpops,pop)
int numpops;
pop_struct *pop;
#endif
{
int p;
for (p=0; p<numpops; p++) {
pop[p].standardized_fitness =
(float *) malloc(pop[p].population_size*sizeof(float));
pop[p].adjusted_fitness = (float *) malloc(pop[p].population_size*sizeof(float));
pop[p].normalized_fitness =
(float *) malloc(pop[p].population_size*sizeof(float));
pop[p].fitness_sort_index = (int *) malloc(pop[p].population_size*sizeof(int));
pop[p].tournament_index = (int *) malloc(pop[p].tournament_K*sizeof(int));
pop[p].population = (tree **) malloc(pop[p].population_size*sizeof(tree *));
pop[p].new_population = (tree **) malloc(pop[p].population_size*sizeof(tree *));
pop[p].best_of_generation = (tree *) NULL;
pop[p].best_of_run = (tree *) NULL;
pop[p].best_of_gen_fitness = (MAXFLOAT);
pop[p].best_of_run_fitness = (MAXFLOAT);
}
}
#ifdef ANSI_FUNC
VOID setup_deme_grid(
int numpops,
int demerows,
int demecols,
pop_struct *pop,
pop_struct ***grid
)
#else
VOID setup_deme_grid(numpops,demerows,demecols,pop,grid)
int numpops;
int demerows;
int demecols;
pop_struct *pop;
pop_struct ***grid;
#endif
{
int r, c;
int i, p, nperdeme;
for (p=0;p<numpops;p++) {
nperdeme = (pop[p].population_size/(demerows*demecols));
for (r=0,i=0; r<demerows;r++) {
for (c=0;c<demecols;c++,i+=nperdeme) {
grid[r][c][p].my_row = r;
grid[r][c][p].my_col = c;
grid[r][c][p].population_size = nperdeme;
grid[r][c][p].steady_state = pop[p].steady_state;
grid[r][c][p].load_from_file = pop[p].load_from_file;
grid[r][c][p].max_depth_for_new_trees =
pop[p].max_depth_for_new_trees;
grid[r][c][p].max_depth_after_crossover =
pop[p].max_depth_after_crossover;
grid[r][c][p].max_mutant_depth = pop[p].max_mutant_depth;
grid[r][c][p].grow_method = pop[p].grow_method;
grid[r][c][p].selection_method = pop[p].selection_method;
grid[r][c][p].tournament_K = pop[p].tournament_K;
grid[r][c][p].deme_search_radius_sigma =
pop[p].deme_search_radius_sigma;
grid[r][c][p].tournament_index =
(int *) malloc(pop[p].tournament_K*sizeof(int));
grid[r][c][p].crossover_func_pt_fraction =
pop[p].crossover_func_pt_fraction;
grid[r][c][p].crossover_any_pt_fraction =
pop[p].crossover_any_pt_fraction;
grid[r][c][p].fitness_prop_repro_fraction =
pop[p].fitness_prop_repro_fraction;
grid[r][c][p].parsimony_factor = pop[p].parsimony_factor;
grid[r][c][p].standardized_fitness =
&(pop[p].standardized_fitness[i]);
grid[r][c][p].adjusted_fitness =
&(pop[p].adjusted_fitness[i]);
grid[r][c][p].normalized_fitness =
&(pop[p].normalized_fitness[i]);
grid[r][c][p].fitness_sort_index =
&(pop[p].fitness_sort_index[i]);
grid[r][c][p].population = &(pop[p].population[i]);
grid[r][c][p].new_population =
&(pop[p].new_population[i]);
grid[r][c][p].best_of_generation = (tree *) NULL;
grid[r][c][p].best_of_run = (tree *) NULL;
grid[r][c][p].best_of_run_gen = -1;
grid[r][c][p].best_of_gen_fitness = -1.0;
grid[r][c][p].best_of_run_fitness = -1.0;
grid[r][c][p].function_table = pop[p].function_table;
grid[r][c][p].terminal_table = pop[p].terminal_table;
grid[r][c][p].function_table_size = pop[p].function_table_size;
grid[r][c][p].terminal_table_size = pop[p].terminal_table_size;
}
}
}
}
#ifdef ANSI_FUNC
VOID initialize_populations(
int numpops,
pop_struct *pop
)
#else
VOID initialize_populations(numpops,pop)
int numpops;
pop_struct *pop;
#endif
{
int p;
int i;
int min_depth_for_new_trees = 1;
int full_cycle;
int grow;
int size;
FILE *f;
tree *temp;
for (p=0; p<numpops; p++) {
full_cycle = 0;
for (i=0; i<pop[p].population_size; i++) {
switch (pop[p].grow_method) {
case FULL:
size = pop[p].max_depth_for_new_trees;
grow = 1;
break;
case GROW:
size = pop[p].max_depth_for_new_trees;
grow = 0;
break;
case RAMPED:
size = (min_depth_for_new_trees +
(i % (pop[p].max_depth_for_new_trees-min_depth_for_new_trees)));
if (pop[p].max_depth_for_new_trees != min_depth_for_new_trees)
if (!(i % (pop[p].max_depth_for_new_trees-min_depth_for_new_trees)))
full_cycle = (!full_cycle);
grow = (full_cycle);
break;
default:
fprintf(stderr,"Error in initialize_populations(): Method %d must be %d %d or %d\n",
pop[p].grow_method, FULL, GROW, RAMPED);
}
pop[p].population[i] = create_random_tree(pop, p, size, 1, grow);
}
/* replace the first members of population with those to be read
from a file, if filename is not null */
if (pop[p].load_from_file[0] != '\0') {
f = fopen(pop[p].load_from_file,"r");
for (i=0; (((int)(temp=read_tree(pop,p,f))) != EOF) &&
(i<pop[p].population_size); i++) {
free_tree(pop[p].population[i]);
pop[p].population[i] = temp;
}
}
}
}
#ifdef ANSI_FUNC
VOID breed_new_population(
pop_struct *pop,
int p,
int demes,
int nrows,
int ncols,
int steady_state
)
#else
VOID breed_new_population(pop,p,demes,nrows,ncols,steady_state)
pop_struct *pop;
int p;
int demes;
int nrows;
int ncols;
int steady_state;
#endif
{
int i, j, incr;
float fraction = 0.0;
tree *parent1, *parent2, *offspring1, *offspring2, *pptr;
int worst_index1, worst_index2, best_index1, best_index2;
#if DBSS == 1
if (demes) {
printf(" Steady state breeding in deme (%d,%d) \n",
pop[p].my_row, pop[p].my_col);
}
#endif
if (steady_state && ((pop[p].selection_method == OVERSELECT) ||
(pop[p].selection_method == FITNESSPROP))) {
printf("SORRY: steady_state population requires either DEMES or \n \
selection_method = TOURNAMENT");
exit (1);
}
for (i = 0, fraction = random_float(1.0);
i < pop[p].population_size;
i += incr, fraction = random_float(1.0)) {
parent1 = find_tree(pop,p,demes,nrows,ncols,&worst_index1,&best_index1);
while (steady_state && (POP[p].population[worst_index1] == parent1))
parent1 = find_tree(pop,p,demes,nrows,ncols,&worst_index1,&best_index1);
#if DBSS == 1
printf("Parent 1: selected POP[%d] to breed. Fitness = %f\n \
\tselected POP[%d] to replace. Fitness = %f\n",
best_index1, POP[p].standardized_fitness[best_index1],
worst_index1, POP[p].standardized_fitness[worst_index1]);
#endif
if ((i < (pop[p].population_size-1)) &&
(fraction <
(pop[p].crossover_func_pt_fraction+pop[p].crossover_any_pt_fraction))) {
parent2 = find_tree(pop,p,demes,nrows,ncols,&worst_index2,&best_index2);
while (steady_state && ((worst_index1 == worst_index2) ||
(POP[p].population[worst_index2] == parent2) ||
(POP[p].population[worst_index2] == parent1) ||
(POP[p].population[worst_index1] == parent2)))
parent2 = find_tree(pop,p,demes,nrows,ncols,&worst_index2,&best_index2);
#if DBSS == 1
printf("Parent 2: selected POP[%d] to breed. Fitness = %f\n \
\tselected POP[%d] to replace. Fitness = %f\n",
best_index2, POP[p].standardized_fitness[best_index2],
worst_index2, POP[p].standardized_fitness[worst_index2]);
#endif
if (fraction < pop[p].crossover_func_pt_fraction) {
crossover_at_func_pt(pop, parent1, parent2, &offspring1, &offspring2);
} else {
crossover_at_any_pt(pop, parent1, parent2, &offspring1, &offspring2);
}
if (steady_state) {
free_tree(POP[p].population[worst_index1]);
free_tree(POP[p].population[worst_index2]);
POP[p].population[worst_index1] = offspring1;
POP[p].population[worst_index2] = offspring2;
POP[p].standardized_fitness[worst_index1] =
evaluate_fitness_of_individual(POP,p,
POP[p].population[worst_index1],
worst_index1) +
((float) count_crossover_pts(POP[p].population[worst_index1]))*
pop[p].parsimony_factor;
POP[p].standardized_fitness[worst_index2] =
evaluate_fitness_of_individual(POP,p,
POP[p].population[worst_index2],
worst_index2) +
((float) count_crossover_pts(POP[p].population[worst_index2]))*
pop[p].parsimony_factor;
} else {
pop[p].new_population[i] = offspring1;
pop[p].new_population[i+1] = offspring2;
}
incr = 2;
} else if (fraction <
(pop[p].crossover_func_pt_fraction
+ pop[p].crossover_any_pt_fraction
+ pop[p].fitness_prop_repro_fraction)) {
if (steady_state) {
#if DBSS == 1
printf("performing straight copy of parent 1\n");
#endif
free_tree(POP[p].population[worst_index1]);
POP[p].population[worst_index1] = copy_tree(parent1);
/* kind of a waste - you should really set fitess-prop-repro-frac
to zero for the steady-state elitist model... */
POP[p].standardized_fitness[worst_index1] =
evaluate_fitness_of_individual(POP,p,
POP[p].population[worst_index1],
worst_index1) +
((float) count_crossover_pts(POP[p].population[worst_index1]))*
pop[p].parsimony_factor;
} else {
pop[p].new_population[i] = copy_tree(parent1);
}
incr = 1;
} else {
if (steady_state) {
#if DBSS == 1
printf("performing mutation of parent 1\n");
#endif
free_tree(POP[p].population[worst_index1]);
POP[p].population[worst_index1] = mutate(pop,copy_tree(parent1));
POP[p].standardized_fitness[worst_index1] =
evaluate_fitness_of_individual(POP,p,
POP[p].population[worst_index1],
worst_index1) +
((float) count_crossover_pts(POP[p].population[worst_index1]))*
pop[p].parsimony_factor;
} else {
pop[p].new_population[i] = mutate(pop,copy_tree(parent1));
}
incr = 1;
}
}
}
#ifdef ANSI_FUNC
VOID free_population(
pop_struct *pop,
int p
)
#else
VOID free_population(pop,p)
pop_struct *pop;
int p;
#endif
{
int i;
for (i=0; i<pop[p].population_size; i++) {
free_tree(pop[p].population[i]);
}
}
#ifdef ANSI_FUNC
VOID load_new_population(
pop_struct *pop,
int p
)
#else
VOID load_new_population(pop,p)
pop_struct *pop;
int p;
#endif
{
int i;
for (i=0; i<pop[p].population_size; i++) {
pop[p].population[i] = pop[p].new_population[i];
}
}
for (i=0; i<pop[p].population_size; i++) {
free_tree(pop[p].population[i]);
}
}
#ifdef ANSI_FUNC
VOID load_new_population(
pop_struct *pop,
int p
)
#else
VOID load_new_population(pop,p)
pop_struct *pop;
int p;
#endif
{
int i;
for (i=0; i<pop[p].population_size; i++) {
pop[p].population[i] = pop[p].new_population[i];
}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -