?? index.html
字號:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Aimed at any serious programmer or computer science student</title>
</head>
<body>
<h1 align="center"><img border="0" src=".\Introduction to Algorithms\clrs.jpg" align="left" width="201" height="238">算法導論</h1>
<h1 align="center">Introduction to Algorithms(MIT教材)</h1>
<h1 align="center"><A HREF=".\Introduction to Algorithms\book6\toc.htm">學習網頁</A></h1>
<p><span class="serif">本書自第一版出版以來,已經成為世界范圍內廣泛使用的大學教材和專業人員的標準參考手冊。本書全面論述了算法的內容,從一定深度上涵蓋了算法的諸多方面,同時其講授和分析方法又兼顧了各個層次讀者的接受能力。各章內容自成體系,可作為獨立單元學習。所有算法都用英文和偽碼描述,使具備初步編程經驗的人也可讀懂。全書講解通俗易懂,且不失深度和數學上的嚴謹性。</span>
<span class="serif">
<p></p>
<p><b>Topics covered:</b> Overview of algorithms (including algorithms as a
technology); designing and analyzing algorithms; asymptotic notation;
recurrences and recursion; probabilistic analysis and randomized algorithms;
heapsort algorithms; priority queues; quicksort algorithms; linear time sorting
(including radix and bucket sort); medians and order statistics (including
minimum and maximum); introduction to data structures (stacks, queues, linked
lists, and rooted trees); hash tables (including hash functions); binary search
trees; red-black trees; augmenting data structures for custom applications;
dynamic programming explained (including assembly-line scheduling, matrix-chain
multiplication, and optimal binary search trees); greedy algorithms (including
Huffman codes and task-scheduling problems); amortized analysis (the accounting
and potential methods); advanced data structures (including B-trees, binomial
and Fibonacci heaps, representing disjoint sets in data structures); graph
algorithms (representing graphs, minimum spanning trees, single-source shortest
paths, all-pairs shortest paths, and maximum flow algorithms); sorting networks;
matrix operations; linear programming (standard and slack forms); polynomials
and the Fast Fourier Transformation (FFT); number theoretic algorithms
(including greatest common divisor, modular arithmetic, the Chinese remainder
theorem, RSA public-key encryption, primality testing, integer factorization);
string matching; computational geometry (including finding the convex hull);
NP-completeness (including sample real-world NP-complete problems and their
insolvability); approximation algorithms for NP-complete problems (including the
traveling salesman problem); reference sections for summations and other
mathematical notation, sets, relations, functions, graphs and trees, as well as
counting and probability backgrounder (plus geometric and binomial
distributions).</span></p>
</body>
</html>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -