?? 各種排序算法小結(jié).txt
字號(hào):
文章標(biāo)題:各種排序算法小結(jié)
原 作 者:不詳
原 出 處:不詳
發(fā) 布 者:loose_went
發(fā)布類型:轉(zhuǎn)載
發(fā)布日期:2004-09-03
今日瀏覽:6
總 瀏 覽:804
排序算法是一種基本并且常用的算法。由于實(shí)際工作中處理的數(shù)量巨大,所以排序算法
對(duì)算法本身的速度要求很高。
而一般我們所謂的算法的性能主要是指算法的復(fù)雜度,一般用O方法來表示。在后面我將
給出詳細(xì)的說明。
對(duì)于排序的算法我想先做一點(diǎn)簡(jiǎn)單的介紹,也是給這篇文章理一個(gè)提綱。
我將按照算法的復(fù)雜度,從簡(jiǎn)單到難來分析算法。
第一部分是簡(jiǎn)單排序算法,后面你將看到他們的共同點(diǎn)是算法復(fù)雜度為O(N*N)(因?yàn)闆]有
使用word,所以無法打出上標(biāo)和下標(biāo))。
第二部分是高級(jí)排序算法,復(fù)雜度為O(Log2(N))。這里我們只介紹一種算法。另外還有幾種
算法因?yàn)樯婕皹渑c堆的概念,所以這里不于討論。
第三部分類似動(dòng)腦筋。這里的兩種算法并不是最好的(甚至有最慢的),但是算法本身比較
奇特,值得參考(編程的角度)。同時(shí)也可以讓我們從另外的角度來認(rèn)識(shí)這個(gè)問題。
第四部分是我送給大家的一個(gè)餐后的甜點(diǎn)——一個(gè)基于模板的通用快速排序。由于是模板函數(shù)
可以對(duì)任何數(shù)據(jù)類型排序(抱歉,里面使用了一些論壇專家的呢稱)。
現(xiàn)在,讓我們開始吧:
一、簡(jiǎn)單排序算法
由于程序比較簡(jiǎn)單,所以沒有加什么注釋。所有的程序都給出了完整的運(yùn)行代碼,并在我的VC環(huán)境
下運(yùn)行通過。因?yàn)闆]有涉及MFC和WINDOWS的內(nèi)容,所以在BORLAND C++的平臺(tái)上應(yīng)該也不會(huì)有什么
問題的。在代碼的后面給出了運(yùn)行過程示意,希望對(duì)理解有幫助。
1.冒泡法:
這是最原始,也是眾所周知的最慢的算法了。他的名字的由來因?yàn)樗墓ぷ骺磥硐笫敲芭荩?
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環(huán)次數(shù):6次
交換次數(shù):6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環(huán)次數(shù):6次
交換次數(shù):3次
上面我們給出了程序段,現(xiàn)在我們分析它:這里,影響我們算法性能的主要部分是循環(huán)和交換,
顯然,次數(shù)越多,性能就越差。從上面的程序我們可以看出循環(huán)的次數(shù)是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現(xiàn)在注意,我們給出O方法的定義:
若存在一常量K和起點(diǎn)n0,使當(dāng)n>=n0時(shí),有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學(xué)好數(shù)學(xué)呀,對(duì)于編程數(shù)學(xué)是非常重要的!!!)
現(xiàn)在我們來看1/2*(n-1)*n,當(dāng)K=1/2,n0=1,g(n)=n*n時(shí),1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環(huán)的復(fù)雜度為O(n*n)。
再看交換。從程序后面所跟的表可以看到,兩種情況的循環(huán)相同,交換不同。其實(shí)交換本身同數(shù)據(jù)源的
有序程度有極大的關(guān)系,當(dāng)數(shù)據(jù)處于倒序的情況時(shí),交換次數(shù)同循環(huán)一樣(每次循環(huán)判斷都會(huì)交換),
復(fù)雜度為O(n*n)。當(dāng)數(shù)據(jù)為正序,將不會(huì)有交換。復(fù)雜度為O(0)。亂序時(shí)處于中間狀態(tài)。正是由于這樣的
原因,我們通常都是通過循環(huán)次數(shù)來對(duì)比算法。
2.交換法:
交換法的程序最清晰簡(jiǎn)單,每次用當(dāng)前的元素一一的同其后的元素比較并交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環(huán)次數(shù):6次
交換次數(shù):6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環(huán)次數(shù):6次
交換次數(shù):3次
從運(yùn)行的表格來看,交換幾乎和冒泡一樣糟。事實(shí)確實(shí)如此。循環(huán)次數(shù)和冒泡一樣
也是1/2*(n-1)*n,所以算法的復(fù)雜度仍然是O(n*n)。由于我們無法給出所有的情況,所以
只能直接告訴大家他們?cè)诮粨Q上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現(xiàn)在我們終于可以看到一點(diǎn)希望:選擇法,這種方法提高了一點(diǎn)性能(某些情況下)
這種方法類似我們?nèi)藶榈呐判蛄?xí)慣:從數(shù)據(jù)中選擇最小的同第一個(gè)值交換,在從省下的部分中
選擇最小的與第二個(gè)交換,這樣往復(fù)下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環(huán)次數(shù):6次
交換次數(shù):2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環(huán)次數(shù):6次
交換次數(shù):3次
遺憾的是算法需要的循環(huán)次數(shù)依然是1/2*(n-1)*n。所以算法復(fù)雜度為O(n*n)。
我們來看他的交換。由于每次外層循環(huán)只產(chǎn)生一次交換(只有一個(gè)最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數(shù)據(jù)較亂的時(shí)候,可以減少一定的交換次數(shù)。
4.插入法:
插入法較為復(fù)雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應(yīng)的位置插入,然后繼續(xù)下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(循環(huán)1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環(huán)2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環(huán)3次)
循環(huán)次數(shù):6次
交換次數(shù):3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環(huán)1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環(huán)2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環(huán)1次)
循環(huán)次數(shù):4次
交換次數(shù):2次
上面結(jié)尾的行為分析事實(shí)上造成了一種假象,讓我們認(rèn)為這種算法是簡(jiǎn)單算法中最好的,其實(shí)不是,
因?yàn)槠溲h(huán)次數(shù)雖然并不固定,我們?nèi)钥梢允褂肙方法。從上面的結(jié)果可以看出,循環(huán)的次數(shù)f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復(fù)雜度仍為O(n*n)(這里說明一下,其實(shí)如果不是為了展示這些簡(jiǎn)單
排序的不同,交換次數(shù)仍然可以這樣推導(dǎo))。現(xiàn)在看交換,從外觀上看,交換次數(shù)是O(n)(推導(dǎo)類似
選擇法),但我們每次要進(jìn)行與內(nèi)層循環(huán)相同次數(shù)的‘=’操作。正常的一次交換我們需要三次‘=’
而這里顯然多了一些,所以我們浪費(fèi)了時(shí)間。
最終,我個(gè)人認(rèn)為,在簡(jiǎn)單排序算法中,選擇法是最好的。
二、高級(jí)排序算法:
高級(jí)排序算法中我們將只介紹這一種,同時(shí)也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個(gè)二叉樹。首先我們選擇一個(gè)中間值middle程序中我們使用數(shù)組中間值,然后
把比它小的放在左邊,大的放在右邊(具體的實(shí)現(xiàn)是從兩邊找,找到一對(duì)后交換)。然后對(duì)兩邊分別使
用這個(gè)過程(最容易的方法——遞歸)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大于中值的數(shù)
i++;
while((pData[j]>middle) && (j>left))//從右掃描大于中值的數(shù)
j--;
if(i<=j)//找到了一對(duì)值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標(biāo)交錯(cuò),就停止(完成一次)
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -