亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? rs.c

?? 一些糾錯(cuò)編碼源代碼
?? C
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
/*             rs.c        *//* This program is an encoder/decoder for Reed-Solomon codes. Encoding is in   systematic form, decoding via the Berlekamp iterative algorithm.   In the present form , the constants mm, nn, tt, and kk=nn-2tt must be   specified  (the double letters are used simply to avoid clashes with   other n,k,t used in other programs into which this was incorporated!)   Also, the irreducible polynomial used to generate GF(2**mm) must also be   entered -- these can be found in Lin and Costello, and also Clark and Cain.   The representation of the elements of GF(2**m) is either in index form,   where the number is the power of the primitive element alpha, which is   convenient for multiplication (add the powers modulo 2**m-1) or in   polynomial form, where the bits represent the coefficients of the   polynomial representation of the number, which is the most convenient form   for addition.  The two forms are swapped between via lookup tables.   This leads to fairly messy looking expressions, but unfortunately, there   is no easy alternative when working with Galois arithmetic.   The code is not written in the most elegant way, but to the best   of my knowledge, (no absolute guarantees!), it works.   However, when including it into a simulation program, you may want to do   some conversion of global variables (used here because I am lazy!) to   local variables where appropriate, and passing parameters (eg array   addresses) to the functions  may be a sensible move to reduce the number   of global variables and thus decrease the chance of a bug being introduced.   This program does not handle erasures at present, but should not be hard   to adapt to do this, as it is just an adjustment to the Berlekamp-Massey   algorithm. It also does not attempt to decode past the BCH bound -- see   Blahut "Theory and practice of error control codes" for how to do this.              Simon Rockliff, University of Adelaide   21/9/89   26/6/91 Slight modifications to remove a compiler dependent bug which hadn't           previously surfaced. A few extra comments added for clarity.           Appears to all work fine, ready for posting to net!                  Notice                 --------   This program may be freely modified and/or given to whoever wants it.   A condition of such distribution is that the author's contribution be   acknowledged by his name being left in the comments heading the program,   however no responsibility is accepted for any financial or other loss which   may result from some unforseen errors or malfunctioning of the program   during use.                                 Simon Rockliff, 26th June 1991*/#include <math.h>#include <stdio.h>#define mm  4           /* RS code over GF(2**4) - change to suit */#define nn  15          /* nn=2**mm -1   length of codeword */#define tt  3           /* number of errors that can be corrected */#define kk  9           /* kk = nn-2*tt  */int pp [mm+1] = { 1, 1, 0, 0, 1} ; /* specify irreducible polynomial coeffts */int alpha_to [nn+1], index_of [nn+1], gg [nn-kk+1] ;int recd [nn], data [kk], bb [nn-kk] ;void generate_gf()/* generate GF(2**mm) from the irreducible polynomial p(X) in pp[0]..pp[mm]   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;                   polynomial form -> index form  index_of[j=alpha**i] = i   alpha=2 is the primitive element of GF(2**mm)*/ {   register int i, mask ;  mask = 1 ;  alpha_to[mm] = 0 ;  for (i=0; i<mm; i++)   { alpha_to[i] = mask ;     index_of[alpha_to[i]] = i ;     if (pp[i]!=0)       alpha_to[mm] ^= mask ;     mask <<= 1 ;   }  index_of[alpha_to[mm]] = mm ;  mask >>= 1 ;  for (i=mm+1; i<nn; i++)   { if (alpha_to[i-1] >= mask)        alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i-1]^mask)<<1) ;     else alpha_to[i] = alpha_to[i-1]<<1 ;     index_of[alpha_to[i]] = i ;   }  index_of[0] = -1 ; }void gen_poly()/* Obtain the generator polynomial of the tt-error correcting, length  nn=(2**mm -1) Reed Solomon code  from the product of (X+alpha**i), i=1..2*tt*/ {   register int i,j ;   gg[0] = 2 ;    /* primitive element alpha = 2  for GF(2**mm)  */   gg[1] = 1 ;    /* g(x) = (X+alpha) initially */   for (i=2; i<=nn-kk; i++)    { gg[i] = 1 ;      for (j=i-1; j>0; j--)        if (gg[j] != 0)  gg[j] = gg[j-1]^ alpha_to[(index_of[gg[j]]+i)%nn] ;        else gg[j] = gg[j-1] ;      gg[0] = alpha_to[(index_of[gg[0]]+i)%nn] ;     /* gg[0] can never be zero */    }   /* convert gg[] to index form for quicker encoding */   for (i=0; i<=nn-kk; i++)  gg[i] = index_of[gg[i]] ; }void encode_rs()/* take the string of symbols in data[i], i=0..(k-1) and encode systematically   to produce 2*tt parity symbols in bb[0]..bb[2*tt-1]   data[] is input and bb[] is output in polynomial form.   Encoding is done by using a feedback shift register with appropriate   connections specified by the elements of gg[], which was generated above.   Codeword is   c(X) = data(X)*X**(nn-kk)+ b(X)          */ {   register int i,j ;   int feedback ;   for (i=0; i<nn-kk; i++)   bb[i] = 0 ;   for (i=kk-1; i>=0; i--)    {  feedback = index_of[data[i]^bb[nn-kk-1]] ;       if (feedback != -1)        { for (j=nn-kk-1; j>0; j--)            if (gg[j] != -1)              bb[j] = bb[j-1]^alpha_to[(gg[j]+feedback)%nn] ;            else              bb[j] = bb[j-1] ;          bb[0] = alpha_to[(gg[0]+feedback)%nn] ;        }       else        { for (j=nn-kk-1; j>0; j--)            bb[j] = bb[j-1] ;          bb[0] = 0 ;        } ;    } ; } ;void decode_rs()/* assume we have received bits grouped into mm-bit symbols in recd[i],   i=0..(nn-1),  and recd[i] is index form (ie as powers of alpha).   We first compute the 2*tt syndromes by substituting alpha**i into rec(X) and   evaluating, storing the syndromes in s[i], i=1..2tt (leave s[0] zero) .   Then we use the Berlekamp iteration to find the error location polynomial   elp[i].   If the degree of the elp is >tt, we cannot correct all the errors   and hence just put out the information symbols uncorrected. If the degree of   elp is <=tt, we substitute alpha**i , i=1..n into the elp to get the roots,   hence the inverse roots, the error location numbers. If the number of errors   located does not equal the degree of the elp, we have more than tt errors   and cannot correct them.  Otherwise, we then solve for the error value at   the error location and correct the error.  The procedure is that found in   Lin and Costello. For the cases where the number of errors is known to be too   large to correct, the information symbols as received are output (the   advantage of systematic encoding is that hopefully some of the information   symbols will be okay and that if we are in luck, the errors are in the   parity part of the transmitted codeword).  Of course, these insoluble cases   can be returned as error flags to the calling routine if desired.   */ {   register int i,j,u,q ;   int elp[nn-kk+2][nn-kk], d[nn-kk+2], l[nn-kk+2], u_lu[nn-kk+2], s[nn-kk+1] ;   int count=0, syn_error=0, root[tt], loc[tt], z[tt+1], err[nn], reg[tt+1] ;/* first form the syndromes */   for (i=1; i<=nn-kk; i++)    { s[i] = 0 ;      for (j=0; j<nn; j++)        if (recd[j]!=-1)          s[i] ^= alpha_to[(recd[j]+i*j)%nn] ;      /* recd[j] in index form *//* convert syndrome from polynomial form to index form  */      if (s[i]!=0)  syn_error=1 ;        /* set flag if non-zero syndrome => error */      s[i] = index_of[s[i]] ;    } ;   if (syn_error)       /* if errors, try and correct */    {/* compute the error location polynomial via the Berlekamp iterative algorithm,   following the terminology of Lin and Costello :   d[u] is the 'mu'th   discrepancy, where u='mu'+1 and 'mu' (the Greek letter!) is the step number   ranging from -1 to 2*tt (see L&C),  l[u] is the   degree of the elp at that step, and u_l[u] is the difference between the   step number and the degree of the elp.*//* initialise table entries */      d[0] = 0 ;           /* index form */      d[1] = s[1] ;        /* index form */      elp[0][0] = 0 ;      /* index form */      elp[1][0] = 1 ;      /* polynomial form */      for (i=1; i<nn-kk; i++)        { elp[0][i] = -1 ;   /* index form */          elp[1][i] = 0 ;   /* polynomial form */        }      l[0] = 0 ;      l[1] = 0 ;      u_lu[0] = -1 ;      u_lu[1] = 0 ;      u = 0 ;      do      {

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av一二三不卡影片| 天天综合网 天天综合色| 欧美一卡二卡三卡四卡| 北条麻妃国产九九精品视频| 国产一区视频网站| 日日欢夜夜爽一区| 亚洲精品视频自拍| 精品国产成人系列| 日韩视频一区二区三区在线播放| 在线免费亚洲电影| 91麻豆成人久久精品二区三区| 国产精品一线二线三线| 韩国三级在线一区| 久久激情五月激情| 麻豆一区二区三| 亚洲美女视频在线| 亚洲黄色录像片| 亚洲精品视频一区| 亚洲在线中文字幕| 亚洲午夜影视影院在线观看| 亚洲精品高清视频在线观看| 国产精品污污网站在线观看| 国产视频一区不卡| 欧美国产日韩a欧美在线观看| 26uuu亚洲| 久久久天堂av| 国产女主播一区| 国产精品久久免费看| 国产精品久久久久一区二区三区共| 精品国产3级a| 国产欧美综合在线| 亚洲国产精品黑人久久久| 欧美国产日韩一二三区| 亚洲欧洲成人自拍| 一区二区三区四区乱视频| 亚洲午夜精品17c| 视频一区二区中文字幕| 久久99精品久久久| 成人一区二区视频| 色婷婷精品久久二区二区蜜臀av | 精品视频一区 二区 三区| 欧美中文字幕一区| 7777精品伊人久久久大香线蕉经典版下载 | www.成人在线| 99国产欧美另类久久久精品| 色噜噜狠狠色综合欧洲selulu| 在线观看日韩av先锋影音电影院| 欧美影视一区在线| 日韩一区二区三区高清免费看看| 精品国产一区二区三区不卡| 国产婷婷色一区二区三区四区| 中文字幕亚洲一区二区av在线 | 久久电影网站中文字幕| 国产成人综合网站| 91蝌蚪porny九色| 欧美高清性hdvideosex| 久久久www免费人成精品| 18涩涩午夜精品.www| 亚洲成a天堂v人片| 狠狠久久亚洲欧美| 91在线云播放| 在线精品视频免费观看| 欧美一区二区视频在线观看 | 精品欧美久久久| 亚洲少妇最新在线视频| 图片区日韩欧美亚洲| 久久国产精品无码网站| 99精品视频在线播放观看| 4438x成人网最大色成网站| 国产亚洲污的网站| 一区二区三区美女视频| 国产精一区二区三区| 在线中文字幕一区二区| 久久久久久久网| 亚洲国产精品精华液网站| 国产91对白在线观看九色| 欧美日韩精品一区二区天天拍小说| 国产视频一区二区三区在线观看| 亚洲成人免费看| 久久电影国产免费久久电影| 色视频成人在线观看免| 精品久久久久久久久久久久久久久久久| 国产精品久久久久久久久免费桃花| 天堂久久久久va久久久久| aaa欧美大片| 精品欧美一区二区久久| 亚洲国产视频一区| 波多野结衣亚洲| 日韩精品一区二区三区在线播放 | 久久综合狠狠综合久久综合88 | 欧美日韩一区二区电影| 亚洲国产成人午夜在线一区| 五月激情综合网| 91福利视频久久久久| 国产精品久久久久影院亚瑟| 老司机免费视频一区二区| 欧美性大战xxxxx久久久| 亚洲情趣在线观看| 91在线国内视频| 亚洲女与黑人做爰| 色八戒一区二区三区| 一区二区三区精品在线| 欧美色图激情小说| 日韩精品一级二级 | 精品99久久久久久| 久久精品国产精品亚洲综合| 日韩一区二区在线观看| 蜜臀av一区二区在线免费观看| 欧美一区二区三区在线视频| 免费不卡在线观看| 2023国产一二三区日本精品2022| 国产麻豆精品一区二区| 国产欧美一区视频| 不卡免费追剧大全电视剧网站| 欧美国产综合一区二区| 99国产精品99久久久久久| 玉米视频成人免费看| 欧美三日本三级三级在线播放| 午夜精品123| 精品日韩在线一区| 成人精品免费视频| 一区二区三区四区高清精品免费观看 | 成人永久免费视频| 亚洲免费在线观看| 欧美精品视频www在线观看| 青青草国产精品亚洲专区无| 欧美精品一区二区三区视频| 成人做爰69片免费看网站| 一区二区三区在线免费观看| 7777女厕盗摄久久久| 国产精品99久久久久久久vr| 国产精品九色蝌蚪自拍| 在线观看精品一区| 蜜臀久久99精品久久久久久9 | 美女视频黄免费的久久| 久久精品人人做人人爽97| 色综合色狠狠综合色| 婷婷久久综合九色综合绿巨人| 精品国产乱码久久| 97久久久精品综合88久久| 性久久久久久久| 国产午夜精品一区二区| 欧洲一区二区三区免费视频| 激情综合色播五月| 亚洲精品视频自拍| 日韩免费在线观看| 91污片在线观看| 久久不见久久见免费视频7| 国产精品国产三级国产普通话99| 欧美日韩日日摸| 成人一道本在线| 日本道色综合久久| 亚洲妇女屁股眼交7| wwwwww.欧美系列| 欧美三级视频在线| 国产91精品一区二区| 三级欧美在线一区| 国产精品久久99| 欧美变态tickling挠脚心| 色菇凉天天综合网| 国产精品一卡二| 午夜精品免费在线| 亚洲欧美怡红院| 久久蜜桃av一区二区天堂| 欧美精品日韩综合在线| 成年人网站91| 奇米影视一区二区三区| 亚洲免费高清视频在线| 国产亚洲成aⅴ人片在线观看| 91麻豆精品国产91久久久使用方法 | 日韩一级二级三级| 色老汉一区二区三区| 国产精品一区2区| 日韩不卡一二三区| 一级日本不卡的影视| 国产精品全国免费观看高清| 日韩欧美一二三区| 欧美亚洲一区二区在线| 成人av电影在线| 国产麻豆视频一区二区| 久久超级碰视频| 日本成人中文字幕在线视频| 亚洲午夜精品网| 亚洲免费av高清| 国产精品成人在线观看| 久久精品水蜜桃av综合天堂| 日韩一级片在线播放| 欧美日韩国产高清一区二区三区| 91小视频在线观看| av在线这里只有精品| 丁香婷婷综合五月| 国产精品一区三区| 国内不卡的二区三区中文字幕 | 欧美aa在线视频| 亚洲成人av一区| 亚洲午夜日本在线观看| 一区二区三区.www| 亚洲欧美色图小说| 亚洲精品国产一区二区三区四区在线| 国产精品全国免费观看高清|