?? demo8_6.cpp
字號:
// DEMO8_6.CPP 8-bit polygon transformation demo with matrices
// INCLUDES ///////////////////////////////////////////////
#define WIN32_LEAN_AND_MEAN // just say no to MFC
#define INITGUID
#include <windows.h> // include important windows stuff
#include <windowsx.h>
#include <mmsystem.h>
#include <iostream.h> // include important C/C++ stuff
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>
#include <ddraw.h> // include directdraw
// DEFINES ////////////////////////////////////////////////
// defines for windows
#define WINDOW_CLASS_NAME "WINCLASS1"
// default screen size
#define SCREEN_WIDTH 640 // size of screen
#define SCREEN_HEIGHT 480
#define SCREEN_BPP 8 // bits per pixel
#define BITMAP_ID 0x4D42 // universal id for a bitmap
#define MAX_COLORS_PALETTE 256
const double PI = 3.1415926535;
// TYPES //////////////////////////////////////////////////////
// basic unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;
// a 2D vertex
typedef struct VERTEX2DI_TYP
{
int x,y; // the vertex
} VERTEX2DI, *VERTEX2DI_PTR;
// a 2D vertex
typedef struct VERTEX2DF_TYP
{
float x,y; // the vertex
} VERTEX2DF, *VERTEX2DF_PTR;
// a 2D polygon
typedef struct POLYGON2D_TYP
{
int state; // state of polygon
int num_verts; // number of vertices
int x0,y0; // position of center of polygon
int xv,yv; // initial velocity
DWORD color; // could be index or PALETTENTRY
VERTEX2DF *vlist; // pointer to vertex list
} POLYGON2D, *POLYGON2D_PTR;
// matrices
typedef struct MATRIX1X2_TYP
{
float M[2]; // data storage
} MATRIX1X2, *MATRIX1X2_PTR;
// note that 1x2 has the same memory layout as a VERTEX2DF, hence we
// can use the matrix function written for a MATRIX1X2 to multiply a
// VERTEX2DF by casting
typedef struct MATRIX3X2_TYP
{
float M[3][2]; // data storage
} MATRIX3X2, *MATRIX3X2_PTR;
// PROTOTYPES //////////////////////////////////////////////
int Draw_Text_GDI(char *text, int x,int y,int color, LPDIRECTDRAWSURFACE7 lpdds);
int DDraw_Fill_Surface(LPDIRECTDRAWSURFACE7 lpdds,int color);
int Draw_Line(int x0, int y0, int x1, int y1, UCHAR color, UCHAR *vb_start, int lpitch);
int Draw_Clip_Line(int x0,int y0, int x1, int y1,UCHAR color,
UCHAR *dest_buffer, int lpitch);
int Clip_Line(int &x1,int &y1,int &x2, int &y2);
int Draw_Polygon2D(POLYGON2D_PTR poly, UCHAR *vbuffer, int lpitch);
int Translate_Polygon2D(POLYGON2D_PTR poly, int dx, int dy);
int Rotate_Polygon2D(POLYGON2D_PTR poly, int theta);
int Scale_Polygon2D(POLYGON2D_PTR poly, float sx, float sy);
int Translate_Polygon2D_Mat(POLYGON2D_PTR poly, int dx, int dy);
int Rotate_Polygon2D_Mat(POLYGON2D_PTR poly, int theta);
int Scale_Polygon2D_Mat(POLYGON2D_PTR poly, float sx, float sy);
int Mat_Mul1X2_3X2(MATRIX1X2_PTR ma,
MATRIX3X2_PTR mb,
MATRIX1X2_PTR mprod);
inline int Mat_Init_3X2(MATRIX3X2_PTR ma,
float m00, float m01,
float m10, float m11,
float m20, float m21);
// MACROS /////////////////////////////////////////////////
// tests if a key is up or down
#define KEYDOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEYUP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)
// initializes a direct draw struct
#define DDRAW_INIT_STRUCT(ddstruct) { memset(&ddstruct,0,sizeof(ddstruct)); ddstruct.dwSize=sizeof(ddstruct); }
// some math macros
#define DEG_TO_RAD(ang) ((ang)*PI/180)
#define RAD_TO_DEG(rads) ((rads)*180/PI)
// GLOBALS ////////////////////////////////////////////////
HWND main_window_handle = NULL; // globally track main window
int window_closed = 0; // tracks if window is closed
HINSTANCE hinstance_app = NULL; // globally track hinstance
// directdraw stuff
LPDIRECTDRAW7 lpdd = NULL; // dd4 object
LPDIRECTDRAWSURFACE7 lpddsprimary = NULL; // dd primary surface
LPDIRECTDRAWSURFACE7 lpddsback = NULL; // dd back surface
LPDIRECTDRAWPALETTE lpddpal = NULL; // a pointer to the created dd palette
LPDIRECTDRAWCLIPPER lpddclipper = NULL; // dd clipper
PALETTEENTRY palette[256]; // color palette
PALETTEENTRY save_palette[256]; // used to save palettes
DDSURFACEDESC2 ddsd; // a direct draw surface description struct
DDBLTFX ddbltfx; // used to fill
DDSCAPS2 ddscaps; // a direct draw surface capabilities struct
HRESULT ddrval; // result back from dd calls
DWORD start_clock_count = 0; // used for timing
// global clipping region
int min_clip_x = 0, // clipping rectangle
max_clip_x = SCREEN_WIDTH - 1,
min_clip_y = 0,
max_clip_y = SCREEN_HEIGHT - 1;
char buffer[80]; // general printing buffer
// storage for our lookup tables
float cos_look[360];
float sin_look[360];
POLYGON2D ship; // the ship
// FUNCTIONS ////////////////////////////////////////////////
inline int Mat_Init_3X2(MATRIX3X2_PTR ma,
float m00, float m01,
float m10, float m11,
float m20, float m21)
{
// this function fills a 3x2 matrix with the sent data in row major form
ma->M[0][0] = m00; ma->M[0][1] = m01;
ma->M[1][0] = m10; ma->M[1][1] = m11;
ma->M[2][0] = m20; ma->M[2][1] = m21;
// return success
return(1);
} // end Mat_Init_3X2
/////////////////////////////////////////////////////////////////
int Mat_Mul1X2_3X2(MATRIX1X2_PTR ma,
MATRIX3X2_PTR mb,
MATRIX1X2_PTR mprod)
{
// this function multiplies a 1x2 matrix against a
// 3x2 matrix - ma*mb and stores the result
// using a dummy element for the 3rd element of the 1x2
// to make the matrix multiply valid i.e. 1x3 X 3x2
for (int col=0; col<2; col++)
{
// compute dot product from row of ma
// and column of mb
float sum = 0; // used to hold result
for (int index=0; index<2; index++)
{
// add in next product pair
sum+=(ma->M[index]*mb->M[index][col]);
} // end for index
// add in last element * 1
sum+= mb->M[index][col];
// insert resulting col element
mprod->M[col] = sum;
} // end for col
return(1);
} // end Mat_Mul_1X2_3X2
///////////////////////////////////////////////////////////////////////
int Draw_Polygon2D(POLYGON2D_PTR poly, UCHAR *vbuffer, int lpitch)
{
// this function draws a POLYGON2D based on
// test if the polygon is visible
if (poly->state)
{
// loop thru and draw a line from vertices 1 to n
for (int index=0; index < poly->num_verts-1; index++)
{
// draw line from ith to ith+1 vertex
Draw_Clip_Line(poly->vlist[index].x+poly->x0,
poly->vlist[index].y+poly->y0,
poly->vlist[index+1].x+poly->x0,
poly->vlist[index+1].y+poly->y0,
poly->color,
vbuffer, lpitch);
} // end for
// now close up polygon
// draw line from last vertex to 0th
Draw_Clip_Line(poly->vlist[0].x+poly->x0,
poly->vlist[0].y+poly->y0,
poly->vlist[index].x+poly->x0,
poly->vlist[index].y+poly->y0,
poly->color,
vbuffer, lpitch);
// return success
return(1);
} // end if
else
return(0);
} // end Draw_Polygon2D
///////////////////////////////////////////////////////////////
// the following 3 functions are the standard transforms (no matrices)
int Translate_Polygon2D(POLYGON2D_PTR poly, int dx, int dy)
{
// this function translates the center of a polygon
// test for valid pointer
if (!poly)
return(0);
// translate
poly->x0+=dx;
poly->y0+=dy;
// return success
return(1);
} // end Translate_Polygon2D
///////////////////////////////////////////////////////////////
int Rotate_Polygon2D(POLYGON2D_PTR poly, int theta)
{
// this function rotates the local coordinates of the polygon
// test for valid pointer
if (!poly)
return(0);
// test for negative rotation angle
if (theta < 0)
theta+=360;
// loop and rotate each point, very crude, no lookup!!!
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)
{
// perform rotation
float xr = (float)poly->vlist[curr_vert].x*cos_look[theta] -
(float)poly->vlist[curr_vert].y*sin_look[theta];
float yr = (float)poly->vlist[curr_vert].x*sin_look[theta] +
(float)poly->vlist[curr_vert].y*cos_look[theta];
// store result back
poly->vlist[curr_vert].x = xr;
poly->vlist[curr_vert].y = yr;
} // end for curr_vert
// return success
return(1);
} // end Rotate_Polygon2D
////////////////////////////////////////////////////////
int Scale_Polygon2D(POLYGON2D_PTR poly, float sx, float sy)
{
// this function scalesthe local coordinates of the polygon
// test for valid pointer
if (!poly)
return(0);
// loop and scale each point
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)
{
// scale and store result back
poly->vlist[curr_vert].x *= sx;
poly->vlist[curr_vert].y *= sy;
} // end for curr_vert
// return success
return(1);
} // end Scale_Polygon2D
///////////////////////////////////////////////////////////////////////
// these are the matrix versions, note they are more inefficient for
// single transforms, but their power comes into play when you concatenate
// multiple transformations, not to mention that all transforms are accomplished
// with the same code, just the matrix differs
int Translate_Polygon2D_Mat(POLYGON2D_PTR poly, int dx, int dy)
{
// this function translates the center of a polygon by using a matrix multiply
// on the the center point, this is incredibly inefficient, but for educational purposes
// if we had an object that wasn't in local coordinates then it would make more sense to
// use a matrix, but since the origin of the object is at x0,y0 then 2 lines of code can
// translate, but lets do it the hard way just to see :)
// test for valid pointer
if (!poly)
return(0);
MATRIX3X2 mt; // used to hold translation transform matrix
// initialize the matrix with translation values dx dy
Mat_Init_3X2(&mt,1,0, 0,1, dx, dy);
// create a 1x2 matrix to do the transform
MATRIX1X2 p0 = {poly->x0, poly->y0};
MATRIX1X2 p1 = {0,0}; // this will hold result
// now translate via a matrix multiply
Mat_Mul1X2_3X2(&p0, &mt, &p1);
// now copy the result back into polygon
poly->x0 = p1.M[0];
poly->y0 = p1.M[1];
// return success
return(1);
} // end Translate_Polygon2D_Mat
///////////////////////////////////////////////////////////////
int Rotate_Polygon2D_Mat(POLYGON2D_PTR poly, int theta)
{
// this function rotates the local coordinates of the polygon
// test for valid pointer
if (!poly)
return(0);
// test for negative rotation angle
if (theta < 0)
theta+=360;
MATRIX3X2 mr; // used to hold rotation transform matrix
// initialize the matrix with translation values dx dy
Mat_Init_3X2(&mr,cos_look[theta],sin_look[theta],
-sin_look[theta],cos_look[theta],
0, 0);
// loop and rotate each point, very crude, no lookup!!!
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)
{
// create a 1x2 matrix to do the transform
MATRIX1X2 p0 = {poly->vlist[curr_vert].x, poly->vlist[curr_vert].y};
MATRIX1X2 p1 = {0,0}; // this will hold result
// now rotate via a matrix multiply
Mat_Mul1X2_3X2(&p0, &mr, &p1);
// now copy the result back into vertex
poly->vlist[curr_vert].x = p1.M[0];
poly->vlist[curr_vert].y = p1.M[1];
} // end for curr_vert
// return success
return(1);
} // end Rotate_Polygon2D_Mat
////////////////////////////////////////////////////////
int Scale_Polygon2D_Mat(POLYGON2D_PTR poly, float sx, float sy)
{
// this function scalesthe local coordinates of the polygon
// test for valid pointer
if (!poly)
return(0);
MATRIX3X2 ms; // used to hold scaling transform matrix
// initialize the matrix with translation values dx dy
Mat_Init_3X2(&ms,sx,0,
0,sy,
0, 0);
// loop and scale each point
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)
{
// scale and store result back
// create a 1x2 matrix to do the transform
MATRIX1X2 p0 = {poly->vlist[curr_vert].x, poly->vlist[curr_vert].y};
MATRIX1X2 p1 = {0,0}; // this will hold result
// now scale via a matrix multiply
Mat_Mul1X2_3X2(&p0, &ms, &p1);
// now copy the result back into vertex
poly->vlist[curr_vert].x = p1.M[0];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -