亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pat4c.htm

?? java設計范式.rar
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
<SCRIPT>
function setFocus() {	
	if ((navigator.appName != "Netscape") && (parseFloat(navigator.appVersion) == 2)) {
	return;
	} else {
	self.focus();
	}
}
</SCRIPT><HTML><HEAD><TITLE>Composite</TITLE><SCRIPT>function setFocus() {		if ((navigator.appName != "Netscape") && (parseFloat(navigator.appVersion) == 2)) {	return;	} else {	self.focus();	}}</SCRIPT></HEAD><BODY	BGCOLOR	= #FFFFFF	TEXT = #000000
onLoad="setFocus()";onLoad="setFocus()";><A NAME="top"></A><A NAME="Composite"></A><A NAME="intent"></A><H2><A HREF="#motivation"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Motivation"></A> Intent</H2> <A NAME="auto1000"></A><P>Compose objects into tree structures to represent part-wholehierarchies.  Composite lets clients treat individual objects andcompositions of objects uniformly.</P><A NAME="motivation"></A><H2><A HREF="#applicability"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Applicability"></A> Motivation</H2> <A NAME="auto1001"></A><P>Graphics applications like drawing editors and schematic capturesystems let users build complex diagrams out of simple components.The user can group components to form larger components, which inturn can be grouped to form still larger components.  A simpleimplementation could define classes for graphical primitives suchas Text and Lines plus other classes that act as containers forthese primitives.</P><A NAME="recursivecomp-graphics"></A><P>But there's a problem with this approach:  Code that uses theseclasses must treat primitive and container objects differently,even if most of the time the user treats them identically.  Havingto distinguish these objects makes the application more complex.The Composite pattern describes how to use recursive compositionso that clients don't have to make this distinction.</P><A NAME="picture-163c"></A><P ALIGN=CENTER><IMG SRC="Pictures/compo075.gif"></P><A NAME="auto1002"></A><P>The key to the Composite pattern is an abstract class thatrepresents <EM>both</EM> primitives and their containers.  For thegraphics system, this class is Graphic.  Graphic declares operationslike Draw that are specific to graphical objects.  It also declaresoperations that all composite objects share, such as operationsfor accessing and managing its children.</P><A NAME="auto1003"></A><P>The subclasses Line, Rectangle, and Text (see preceding class diagram)define primitive graphical objects.  These classes implement Draw todraw lines, rectangles, and text, respectively.  Since primitivegraphics have no child graphics, none of these subclasses implementschild-related operations.</P><A NAME="auto1004"></A><P>The Picture class defines an aggregate of Graphic objects.  Pictureimplements Draw to call Draw on its children, and it implementschild-related operations accordingly.  Because the Picture interfaceconforms to the Graphic interface, Picture objects can compose otherPictures recursively.</P><A NAME="auto1005"></A><P>The following diagram shows a typical composite object structureof recursively composed Graphic objects:</P><A NAME="picture-164o"></A><P ALIGN=CENTER><IMG SRC="Pictures/compo074.gif"></P><A NAME="applicability"></A><H2><A HREF="#structure"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Structure"></A> Applicability</H2> <A NAME="auto1006"></A><P>Use the Composite pattern when</P><UL><A NAME="auto1007"></A><LI>you want to represent part-whole hierarchies of objects.<A NAME="auto1008"></A><P></P><A NAME="auto1009"></A><LI>you want clients to be able to ignore the difference betweencompositions of objects and individual objects. Clients will treat allobjects in the composite structure uniformly.</UL><A NAME="structure"></A><H2><A HREF="#participants"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Participants"></A> Structure</H2> <P ALIGN=CENTER><IMG SRC="Pictures/compo072.gif"></P><A NAME="auto1010"></A><P>A typical Composite object structure might look like this:</P><A NAME="composite-inst"></A><P ALIGN=CENTER><IMG SRC="Pictures/compo073.gif"></P><A NAME="participants"></A><H2><A HREF="#collaborations"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Collaborations"></A> Participants</H2><UL><A NAME="auto1011"></A><LI><B>Component</B> (Graphic)<A NAME="auto1012"></A><P></P>    <UL>    <A NAME="auto1013"></A><LI>declares the interface for objects in the composition.</LI>    <A NAME="auto1014"></A><P><!-- extra space --></P>    <A NAME="auto1015"></A><LI>implements default behavior for the interface    common to all classes, as appropriate.</LI>    <A NAME="auto1016"></A><P><!-- extra space --></P>    <A NAME="auto1017"></A><LI>declares an interface for accessing and managing its child    components.</LI>    <A NAME="auto1018"></A><P><!-- extra space --></P>    <A NAME="auto1019"></A><LI>(optional) defines an interface for accessing a component's    parent in the recursive structure, and implements it if that's    appropriate.</LI>    </UL><A NAME="auto1020"></A><P></P><A NAME="leaf-part-comp"></A><LI><B>Leaf</B> (Rectangle, Line, Text, etc.)<A NAME="auto1021"></A><P></P>    <UL>    <A NAME="auto1022"></A><LI>represents leaf objects in the composition. A leaf has no    children.</LI>    <A NAME="auto1023"></A><P><!-- extra space --></P>    <A NAME="auto1024"></A><LI>defines behavior for primitive objects in the composition.</LI>    </UL><A NAME="auto1025"></A><P></P><A NAME="auto1026"></A><LI><B>Composite</B> (Picture)<A NAME="auto1027"></A><P></P>    <UL>    <A NAME="auto1028"></A><LI>defines behavior for components having children.</LI>    <A NAME="auto1029"></A><P><!-- extra space --></P>    <A NAME="auto1030"></A><LI>stores child components.</LI>    <A NAME="auto1031"></A><P><!-- extra space --></P>    <A NAME="auto1032"></A><LI>implements child-related operations in the Component interface.</LI>    </UL><A NAME="auto1033"></A><P></P><A NAME="auto1034"></A><LI><B>Client</B><A NAME="auto1035"></A><P></P>    <UL>    <A NAME="auto1036"></A><LI>manipulates objects in the composition through the    Component interface.</LI>    </UL></UL><A NAME="collaborations"></A><H2><A HREF="#consequences"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Consequences"></A> Collaborations</H2><UL><A NAME="auto1037"></A><LI>Clients use the Component class interface to interact with objects inthe composite structure. If the recipient is a Leaf, then the requestis handled directly.  If the recipient is a Composite, then it usuallyforwards requests to its child components, possibly performingadditional operations before and/or after forwarding.</LI></UL><A NAME="consequences"></A><H2><A HREF="#implementation"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Implementation"></A> Consequences</H2> <A NAME="auto1038"></A><P>The Composite pattern</P><UL><A NAME="auto1039"></A><LI>defines class hierarchies consisting of primitive objectsand composite objects. Primitive objects can be composed into morecomplex objects, which in turn can be composed, and so on recursively.Wherever client code expects a primitive object, it can also take acomposite object.</LI><A NAME="auto1040"></A><P></P><A NAME="auto1041"></A><LI>makes the client simple.Clients can treat composite structures and individual objectsuniformly.  Clients normally don't know (and shouldn't care) whetherthey're dealing with a leaf or a composite component.  This simplifiesclient code, because it avoids having to writetag-and-case-statement-style functions over the classes that definethe composition.</LI><A NAME="auto1042"></A><P></P><A NAME="auto1043"></A><LI>makes it easier to add new kinds of components.Newly defined Composite or Leaf subclasses work automatically withexisting structures and client code.  Clients don't have to be changedfor new Component classes.</LI><A NAME="auto1044"></A><P></P><A NAME="auto1045"></A><LI>can make your design overly general.The disadvantage of making it easy to add new components is that itmakes it harder to restrict the components of a composite.  Sometimesyou want a composite to have only certain components.  WithComposite, you can't rely on the type system to enforce thoseconstraints for you.  You'll have to use run-time checks instead.</LI></UL><A NAME="implementation"></A><H2><A HREF="#samplecode"><IMG SRC="gifsb/down3.gif" BORDER=0 ALT="next: Sample Code"></A> Implementation</H2> <A NAME="auto1046"></A><P>There are many issues to consider when implementing the Compositepattern:</P><OL><A NAME="parentref-def-comp"></A><LI><EM>Explicit parent references.</EM>Maintaining references from child components to their parent cansimplify the traversal and management of a composite structure.  Theparent reference simplifies moving up the structure and deleting acomponent. Parent references also help support the <A HREF="pat5afs.htm" TARGET="_mainDisplayFrame">Chain of Responsibility (223)</A> pattern.<A NAME="auto1047"></A><P>The usual place to define the parent reference is in the Componentclass.  Leaf and Composite classes can inherit the reference and theoperations that manage it.</P><A NAME="auto1048"></A><P>With parent references, it's essential to maintain the invariant thatall children of a composite have as their parent the composite that inturn has them as children.  The easiest way to ensure this is tochange a component's parent <EM>only</EM> when it's being added orremoved from a composite.  If this can be implemented once in the Addand Remove operations of the Composite class, then it can be inheritedby all the subclasses, and the invariant will be maintainedautomatically.</P></LI><A NAME="auto1049"></A><P></P><A NAME="auto1050"></A><LI><EM>Sharing components.</EM>It's often useful to share components, for example, to reduce storagerequirements. But when a component can have no more than one parent,sharing components becomes difficult.<A NAME="flywt-w-compst"></A><P>A possible solution is for children to store multiple parents.  Butthat can lead to ambiguities as a request propagates up the structure.The<A HREF="pat4ffs.htm" TARGET="_mainDisplayFrame">Flyweight (195)</A> pattern shows how to rework adesign to avoid storing parents altogether.  It works in cases wherechildren can avoid sending parent requests by externalizing some orall of their state.</P></LI><A NAME="auto1051"></A><P></P><A NAME="auto1052"></A><LI><EM>Maximizing the Component interface.</EM>One of the goals of the Composite pattern is to make clients unawareof the specific Leaf or Composite classes they're using.  To attainthis goal, the Component class should define as many common operationsfor Composite and Leaf classes as possible. The Component classusually provides default implementations for these operations, andLeaf and Composite subclasses will override them.<A NAME="auto1053"></A><P>However, this goal will sometimes conflict with the principle of classhierarchy design that says a class should only define operations thatare meaningful to its subclasses.  There are many operations thatComponent supports that don't seem to make sense for Leaf classes.How can Component provide a default implementation for them?</P><A NAME="auto1054"></A><P>Sometimes a little creativity shows how an operation that would appearto make sense only for Composites can be implemented for allComponents by moving it to the Component class.  For example, theinterface for accessing children is a fundamental part of a Compositeclass but not necessarily Leaf classes.  But if we view a Leaf as aComponent that <EM>never</EM> has children, then we can define a defaultoperation for child access in the Component class that never <EM>returns</EM> any children.  Leaf classes can use the defaultimplementation, but Composite classes will reimplement it to returntheir children.</P><A NAME="auto1055"></A><P>The child management operations are more troublesome and are discussedin the next item.</P></LI><A NAME="auto1056"></A><P></P><A NAME="auto1057"></A><LI><EM>Declaring the child management operations.</EM>Although the Composite class <EM>implements</EM> the Add and Removeoperations for managing children, an important issue in the Compositepattern is which classes <EM>declare</EM> these operations in theComposite class hierarchy.  Should we declare these operations in theComponent and make them meaningful for Leaf classes, or should wedeclare and define them only in Composite and its subclasses?<A NAME="auto1058"></A><P>The decision involves a trade-off between safety and transparency:</P><UL><A NAME="auto1059"></A><LI>Defining the child management interface at the root of the classhierarchy gives you transparency, because you can treat all componentsuniformly.  It costs you safety, however, because clients may try todo meaningless things like add and remove objects from leaves.</LI><A NAME="auto1060"></A><P></P><A NAME="auto1061"></A><LI>Defining child management in the Composite class gives you safety,because any attempt to add or remove objects from leaves will becaught at compile-time in a statically typed language like C++.  Butyou lose transparency, because leaves and composites have differentinterfaces.</LI></UL><A NAME="auto1062"></A><P>We have emphasized transparency over safety in this pattern.  If youopt for safety, then at times you may lose type information and haveto convert a component into a composite.  How can you do this withoutresorting to a type-unsafe cast?</P><A NAME="leaf-in-comp"></A><P>One approach is to declare an operation <CODE>Composite*GetComposite()</CODE> in the Component class.  Component provides a defaultoperation that returns a null pointer.  The Composite class redefinesthis operation to return itself through the <CODE>this</CODE> pointer:</P><A NAME="auto1063"></A><PRE>    class Composite;    

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩极品在线观看| 久久婷婷国产综合精品青草| 久久色在线观看| 亚洲一区二区美女| 91丝袜高跟美女视频| 久久女同精品一区二区| 日本视频在线一区| 欧美日韩激情在线| 一区二区三区高清在线| 日韩一区二区三区精品视频| 精品黑人一区二区三区久久| 亚洲第一福利一区| 欧洲亚洲精品在线| 亚洲人成网站在线| 成人av中文字幕| 亚洲欧美一区二区不卡| 成人久久久精品乱码一区二区三区| 日韩精品影音先锋| 青青草成人在线观看| 欧美一区二区三区成人| 日韩国产欧美在线播放| 日韩三区在线观看| 精品在线亚洲视频| 久久久精品免费免费| 国产河南妇女毛片精品久久久| 国产视频亚洲色图| 91亚洲资源网| 午夜精彩视频在线观看不卡| 欧美精品三级在线观看| 老司机精品视频线观看86 | 欧美电影免费观看高清完整版在线观看 | 日韩黄色片在线观看| 日韩欧美不卡一区| 成人av一区二区三区| 亚洲综合自拍偷拍| 欧美一级免费大片| 国产成人在线影院| 亚洲一区二区三区中文字幕在线| 欧美日韩一区二区三区高清| 蜜桃精品在线观看| 中文字幕一区二区三区av| 欧美日韩一区二区三区四区| 国产自产高清不卡| 亚洲欧美偷拍三级| 精品国内二区三区| 在线亚洲免费视频| 国产呦萝稀缺另类资源| 一区二区三区美女| 久久久综合网站| 欧美女孩性生活视频| 国产成人av福利| 免费成人在线观看视频| 亚洲手机成人高清视频| 久久免费视频色| 欧美精品免费视频| 91视频你懂的| 成人蜜臀av电影| 久久精品国产亚洲高清剧情介绍 | 欧美军同video69gay| 国产91精品在线观看| 久久国产精品99久久久久久老狼| 一区二区三区在线视频免费观看| 国产日韩视频一区二区三区| 日韩无一区二区| 欧美精品一卡两卡| 欧美亚洲免费在线一区| 色噜噜夜夜夜综合网| av成人老司机| 成人精品一区二区三区四区 | 欧美电影影音先锋| 欧美综合一区二区| 欧美视频在线一区二区三区 | 不卡av免费在线观看| 成a人片国产精品| 成人动漫视频在线| 91蜜桃传媒精品久久久一区二区| 国产成人av电影| 99在线视频精品| 99久久精品久久久久久清纯| 不卡一区在线观看| 色综合中文字幕国产| 蜜臀精品一区二区三区在线观看 | 欧美大片日本大片免费观看| 欧美日韩高清一区| 337p亚洲精品色噜噜狠狠| 欧美丰满一区二区免费视频| 91精品蜜臀在线一区尤物| 日韩亚洲欧美综合| 欧美韩日一区二区三区| 亚洲欧美日韩电影| 日韩电影在线看| 国产综合久久久久影院| 99久久99久久综合| 欧美日韩视频在线观看一区二区三区| 欧美日韩成人综合| 精品国产sm最大网站| 亚洲特级片在线| 日韩高清不卡一区二区| 国产乱人伦偷精品视频不卡| 99久久伊人久久99| 欧美一区2区视频在线观看| 亚洲精品一线二线三线| 亚洲蜜臀av乱码久久精品蜜桃| 午夜伦欧美伦电影理论片| 韩国女主播成人在线观看| 9色porny自拍视频一区二区| 日韩视频在线你懂得| 亚洲欧美日韩人成在线播放| 麻豆精品在线视频| 日本道免费精品一区二区三区| 日韩亚洲欧美成人一区| 亚洲人午夜精品天堂一二香蕉| 免费成人在线观看视频| 欧美最猛黑人xxxxx猛交| 国产人妖乱国产精品人妖| 日本视频一区二区三区| 色天天综合色天天久久| 国产亚洲婷婷免费| 天天综合色天天综合色h| 96av麻豆蜜桃一区二区| 国产女主播视频一区二区| 蜜臀久久99精品久久久久久9| 欧美亚洲免费在线一区| 亚洲激情综合网| 91麻豆精东视频| 国产精品久久久久一区 | 美女免费视频一区| 在线成人小视频| 午夜伦欧美伦电影理论片| 欧美日韩一区二区三区免费看| 亚洲综合色网站| 欧美亚洲国产一区二区三区va| 亚洲制服丝袜av| 精品视频999| 麻豆国产精品一区二区三区 | 欧美视频中文字幕| 亚洲一二三级电影| 欧洲一区在线电影| 亚洲成人免费观看| 欧美一区二区三区日韩视频| 日韩av中文字幕一区二区三区| 欧美精品在线一区二区| 九九国产精品视频| 中文字幕国产一区| 色94色欧美sute亚洲线路二 | 欧美日韩一区中文字幕| 日本三级韩国三级欧美三级| 日韩女优av电影| 成人av午夜影院| 亚洲电影一区二区| 欧美一级电影网站| www.亚洲色图| 婷婷综合五月天| 国产亚洲欧美日韩日本| 色综合久久综合网97色综合 | 欧美视频一区二| 激情图区综合网| 亚洲美女视频一区| 日韩精品一区二区三区中文不卡 | 日本一区二区三区四区在线视频| 91片黄在线观看| 精品一区二区免费在线观看| 国产欧美一区视频| 欧美三级韩国三级日本三斤| 黄色成人免费在线| 一区二区不卡在线视频 午夜欧美不卡在| 欧美精品第1页| av成人动漫在线观看| 久久精品国产色蜜蜜麻豆| 亚洲少妇最新在线视频| 日韩片之四级片| 91精彩视频在线| 99久久精品国产一区| 国产九色sp调教91| 视频一区欧美日韩| 亚洲国产精品成人综合| 不卡av在线免费观看| 亚洲国产人成综合网站| 亚洲丝袜制服诱惑| 国产精品传媒入口麻豆| 日韩一区二区三区免费看| 日本道免费精品一区二区三区| 国产电影精品久久禁18| 久久99这里只有精品| 香蕉影视欧美成人| 午夜精品免费在线观看| 亚洲一区二区三区视频在线 | 亚洲成人中文在线| 亚洲高清视频的网址| 亚洲成a人在线观看| 五月天中文字幕一区二区| 亚洲成人av资源| 日韩**一区毛片| 全国精品久久少妇| 午夜av一区二区| 日本最新不卡在线| 天天色综合成人网| 奇米影视一区二区三区小说| 免费观看一级欧美片| 狠狠久久亚洲欧美|