亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? doc.html

?? 設計一個軟件的啟動過程界面
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML><HEAD>   <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">   <META NAME="Author" CONTENT="Markku V鋒鋋ho">   <META NAME="GENERATOR" CONTENT="Mozilla/4.08 [en] (X11; I; Linux 2.2.5 i686) [Netscape]">   <TITLE>Knight's Tour: Documentation</TITLE></HEAD><BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EF" VLINK="#51188E" ALINK="#FF0000">&nbsp;<BR>&nbsp;<CENTER><P><IMG SRC="images/knight.gif" ALT="" HSPACE=10 VSPACE=10 NOSAVE HEIGHT=78 WIDTH=78></CENTER><P><BR><BR><P><BR><BR><BR><BR><CENTER><H1>Knight's Tour (TK94KV1)</H1></CENTER><CENTER><H2><A HREF="http://www.helsinki.fi/~vahaaho">Markku V&auml;h&auml;aho</A></H2></CENTER><BLOCKQUOTE>&nbsp;<P><BR><BR><BR>&nbsp;<BR>&nbsp;<BR>&nbsp;<BR>&nbsp;<P>Helsinki, April 19, 1999<BR><A HREF="http://www.cs.helsinki.fi/kurssit/cum_laude/58161-5/tiralab/index.en.html">DataStructures Project</A><BR><A HREF="http://www.helsinki.fi">University of Helsinki</A><BR><A HREF="http://www.cs.helsinki.fi">Department of Computer Science</A><BR>Tutor: Timo Patrikka<BR>&nbsp;<P><HR NOSHADE WIDTH="100%"><H3>Contents</H3><H4><A HREF="#1">1 Instructions for Use</A></H4>&nbsp;&nbsp;&nbsp; <A HREF="#1.1">1.1 Introduction</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#1.2">1.2 Installation and Compilation</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#1.3">1.3 Using the Program</A><BR>&nbsp;&nbsp;&nbsp;<A HREF="#1.4"> 1.4 Limitations</A><H4><A HREF="#2">2 Program Structure</A></H4>&nbsp;&nbsp;&nbsp; <A HREF="#2.1">2.1 About the Knight's Tour Quandary</A><BR>&nbsp;&nbsp;&nbsp;<A HREF="#2.2"> 2.2 The Algorithm</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#2.3">2.3 Class Structure</A><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="#2.3.1">2.3.1 KnightsTour</A><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="#2.3.2">2.3.2 KnightThread</A><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="#2.3.3">2.3.3 GraphicalBoard</A><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="#2.3.4">2.3.4 BoardListener</A><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="#2.3.5">2.3.5 KnightBoard</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#2.4">2.4 Possible improvements</A><H4><A HREF="#3">3 Testing</A></H4>&nbsp;&nbsp;&nbsp; <A HREF="#3.1">3.1 Testing Tool</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#3.2">3.2 Verifying Individual Classes</A><BR>&nbsp;&nbsp;&nbsp; <A HREF="#3.3">3.3 Test Results</A><P><HR NOSHADE WIDTH="100%"><H2><A NAME="1"></A>1 Instructions for Use</H2></BLOCKQUOTE><BLOCKQUOTE><H4><A NAME="1.1"></A>1.1 Introduction</H4><BLOCKQUOTE>The knight's tour is a puzzle that has amused chess playersthroughout the ages. The goal of the knight is to traverse around the board,landing on each square but once, and finally return to the square it startedfrom. If the board is thought of as a graph, this kind of closed path iscalled a Hamiltonian cycle. It can be proven that there is a closed knight'stour on all boards with an even number of squares and dimensions greaterthan four.<P>The Knight's Tour Applet demonstrates a simple algorithm for findinga knight's tour. The idea is to always jump to the square with least exits,unless that makes some unvisited squares unreachable. This algorithm workssurprisingly well: in the majority of cases the program chooses the rightmoves on first try, without having to back up once. If this fails, allpossibilities are eventually tried in a depth-first manner.<P>The program is implemented as a Java applet that can be run with anybrowser that supports Java 1.1. The board is represented graphically, andcan be resized by dragging the borders with the mouse to any dimensionsbetween five and ten. The starting square can be chosen freely, and theactual search process can be viewed as an animation or skipped to justsee the final solution.</BLOCKQUOTE><H4><A NAME="1.2"></A>1.2 Installation and Compilation</H4><BLOCKQUOTE>The program is an applet that can be run with either a Java1.1-capable browser, such as <A HREF="http://www.netscape.com/download">NetscapeNavigator</A> 4.06 or newer, or the applet viewer that comes with Sun Microsystem's<A HREF="http://www.java.sun.com/products/OV_jdkProduct.html">JavaDevelopment Kit</A> (JDK). The easiest way to try the program is to enableJava in the browser settings and point it to the following URL: <A HREF="http://www.helsinki.fi/~vahaaho/KnightsTour/tour.html">http://www.helsinki.fi/~vahaaho/KnightsTour/tour.html</A>.<P>If you have JDK 1.1 or later installed, you may also download the programalong with the source code as a gzip'd tar package from <A HREF="http://www.helsinki.fi/~vahaaho/KnightsTour/knightstour.tar.gz">http://www.helsinki.fi/~vahaaho/KnightsTour/knightstour.tar.gz</A>.The package contains the following files:<P><TT><A HREF="../../KnightsTour">KnightsTour/</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../README">README</A></TT><P><TT>&nbsp;&nbsp;&nbsp; <A HREF="../Makefile">Makefile</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../BoardListener.java">BoardListener.java</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../GraphicalBoard.java">GraphicalBoard.java</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../KnightBoard.java">KnightBoard.java</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../KnightThread.java">KnightThread.java</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../KnightsTour.java">KnightsTour.java</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../Test.java">Test.java</A></TT><P><TT>&nbsp;&nbsp;&nbsp; <A HREF="../tour.html">tour.html</A></TT><BR><TT>&nbsp;&nbsp;&nbsp; <A HREF="../knight.gif">knight.gif</A></TT><P><TT>&nbsp;&nbsp;&nbsp; <A HREF=".">doc/</A></TT><BR><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="doc.html">doc.html</A></TT><BR><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="overview.html">overview.html</A></TT><BR><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...</TT><BR><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <A HREF="images/">images/</A></TT><BR><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...</TT><P>Details of how to install and compile vary, but on Linux and other Unixsystems the following shell commands will do the job:<BLOCKQUOTE><TT>tar -xzvf knightstour.tar.gz</TT><BR><TT>cd KnightsTour</TT><BR><TT>make</TT><BR><TT>appletviewer tour.html</TT></BLOCKQUOTE>The program and documentation are freely distributable and modifiable aslong as credit is given to the original author.</BLOCKQUOTE><H4><A NAME="1.3"></A>1.3 Using the Program</H4><BLOCKQUOTE>The applet presents a friendly graphical user interface thatshould be very easy to use. First, the program asks to choose the startingsquare. Use the mouse to click on a square of your choice. The programthen starts to look for a solution:<CENTER><P><IMG SRC="images/screenshot.gif" ALT="" HSPACE=10 VSPACE=5 NOSAVE HEIGHT=396 WIDTH=278><BR><I>Figure 1. </I>Program running.</CENTER><BR>&nbsp;<P><BR><P>The starting square is shown with a filled blue circle. The currentposition of the knight has a knight image in it, and already visited squareshave yellow circles containing the number of the move. Unvisited squareshave a number printed in red that tells how many exits the square has left;the program chooses the square with least exits first. If the search comesto a dead end, the knight backs up one move at a time. When the searchis completed, the total number of positions tried is shown.<P>The process can be paused with the 'Pause' button and resumed by selectingthe same button again. Animation can be switched on and off using the checkbox,and the board cleared with the 'Clear' button. If the search process islengthy or not of interest, it is a good idea to switch off animation.<P>When searching is not going on, the board can be resized. Moving thecursor over the right or bottom borders changes its shape, meaning thatthe borders may be dragged by pressing and holding the mouse button andmoving the mouse. During dragging, the number of squares in the board isshown in the upper left corner. If the number is odd, it is printed inred, because there are no solutions for such boards. After the drag, theboard is automatically cleared.<P>The program has been tested to find solutions for all even-sized boardsfrom all starting squares, as should be the case. On symmetrical even-sizedboards the number of positions tried is usually small, but on a 5x6 board,for example, tens of thousands may be needed. On odd-sized boards the numberof positions the program has to go through before quitting is very large,except for the 5x5 board, where it lies between 15 000 and 40 000. By switchingoff animation, this can be verified even on slower computers. For moredetailed figures, see <A HREF="#3.3">section 3.3</A>.</BLOCKQUOTE><H4><A NAME="1.4"></A>1.4 Limitations</H4><BLOCKQUOTE>Currently, the dimensions of the board can only be betweenfive and ten. There are solutions for some boards three squares wide, butnot for one, two, or four wide. The upper bound of ten is to always leavesufficient space for the user to resize the board without making the individualsquares too small. It is possible to change these bounds by changing constantsin the classes <A HREF="#2.3.5">KnightBoard</A> and<A HREF="#2.3.3">GraphicalBoard</A>.<P>There is no way to save or print the intermediate or final results.</BLOCKQUOTE><H2><A NAME="2"></A>2 Program Structure</H2><H4><A NAME="2.1"></A>2.1 About the Knight's Tour Quandary</H4><BLOCKQUOTE>From Ted Feller's <A HREF="http://home.earthlink.net/~tfiller/knight.htm">Knight'sTour page</A> (after <I>Scientific American</I>, May 1997):<P>Mathematically, the knight's tour quandary reduces to finding a "Hamiltoniancycle" in a graph. A graph is a collection of dots, called nodes, joinedby lines, called edges. A Hamiltonian cycle is a closed path that visitseach node exactly once. The graph of a chessboard is obtained by placinga node at the center of each square and then drawing edges between nodesthat are separated by one knight's move. It helps to color the nodes darkand light, corresponding to the usual pattern on a chessboard. Notice thatwhen the knight moves, it hops from a node of one color to one of the oppositecolor, so the nodes must be alternately dark and light around any Hamiltoniancycle. This pattern implies that the total number of nodes must be even.If the chessboard were 3 x 5, with 15 nodes (an odd number), we have provedthat no knight's tour is possible on such a chessboard. The same is truefor any rectangular board of size <I>m</I> x <I>n</I> where <I>m</I> and<I>n</I>are both odd.<BR>&nbsp;<CENTER><TABLE NOSAVE ><TR NOSAVE><TD NOSAVE><IMG SRC="images/board.gif" ALT="" HSPACE=50 NOSAVE BORDER=1 HEIGHT=186 WIDTH=186></TD><TD><IMG SRC="images/graph.gif" ALT="" HSPACE=50 NOSAVE BORDER=1 HEIGHT=227 WIDTH=226></TD></TR><TR><TD><CENTER><I>Figure 2.</I> Knight's moves.</CENTER></TD><TD><CENTER><I>Figure 3.</I> Knight's graph.</CENTER></TD></TR></TABLE></CENTER><P>This kind of argument is known as a parity proof. A more subtle parityproof, invented by Louis Posa, demonstrates that there is no closed knight'stour on any 4 x <I>n</I> board. Allen Schwenk provided a characterizationof those rectangular boards that support a knight's tour. He found thatan <I>m</I> x <I>n</I> chessboard (when <I>m</I> is less than or equalto <I>n</I>) supports a knight's tour unless:<BLOCKQUOTE><LI><I>m</I> and <I>n</I> are both odd</LI><LI><I>m</I> = 1, 2 or 4</LI><LI><I>m</I> = 3 and <I>n</I> = 4, 6 or 8</LI></BLOCKQUOTE>The key idea is that a tour on an <I>m</I> x <I>n</I> board can alwaysbe extended to one on an <I>m</I> x (<I>n</I> + 4) rectangle. By symmetry,a tour on an <I>m</I> x <I>n</I> board can be extended to any (<I>m</I>+ 4) x <I>n</I> rectangle.</BLOCKQUOTE><H4><A NAME="2.2"></A>2.2 The Algorithm</H4><BLOCKQUOTE>The algorithm used is very simple. When a new board is created,a value is calculated for each square. This value represents the numberof exits, ie. the number of unvisited squares reachable in one move. Anadjacency list is created for each square, which contains indices to thesquares reachable directly from it.<P>The tour is looked for using a recursive function that implements adepth-first search. Possible moves are tried in order of increasing value,so the squares with the least number of exits come first. This is knownas Warnsdorff's rule. If there are many squares with the same value, theyare tried in order of decreasing distance from the starting square.<P>After each move, the values for all affected squares are updated, andthe square is marked visited. The starting square is not actually visiteduntil last, so special care is taken of the squares adjacent to it in thegraph. No move that is not next-to-last may use the last unvisited one.This way, the program ensures there is always at least one way back tothe starting square. Also, each time values are updated, orphaned (unreachable)squares are checked for. If a move would result in unreachable squares,it is skipped. This decreases the total size of the search tree considerably.</BLOCKQUOTE><H4><A NAME="2.3"></A>2.3 Class Structure</H4><BLOCKQUOTE>The class structure of the program is as follows:<CENTER><P><IMG SRC="images/diagram.gif" ALT="" HSPACE=10 VSPACE=5 NOSAVE BORDER=1 HEIGHT=1070 WIDTH=802><BR><I>Figure 4.</I> UML class diagram.</CENTER><BR>&nbsp;<P>Only a single object of each class exists at a time. Description ofthe classes follows.<BR>&nbsp;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产精品欧美一二99| 成人免费视频视频在线观看免费 | 日韩欧美亚洲国产另类| 亚洲国产精华液网站w| 日本午夜一区二区| 一本大道久久精品懂色aⅴ| 精品91自产拍在线观看一区| 亚洲午夜国产一区99re久久| 国产麻豆9l精品三级站| 欧美一卡二卡在线| 午夜视频一区二区三区| 色天使久久综合网天天| 国产精品伦理一区二区| 国产伦精品一区二区三区视频青涩| 欧美男生操女生| 亚洲成人av在线电影| 一本一道综合狠狠老| 国产精品入口麻豆原神| 国产91高潮流白浆在线麻豆| 精品久久国产字幕高潮| 欧美a级一区二区| 正在播放亚洲一区| 日韩专区在线视频| 欧美日韩高清一区二区不卡| 亚洲一区二区欧美日韩| 色综合 综合色| 夜夜操天天操亚洲| 欧美伊人久久久久久久久影院 | 久久久不卡网国产精品二区| 久久电影网站中文字幕| 日韩一本二本av| 老司机免费视频一区二区三区| 欧美一级片免费看| 奇米影视在线99精品| 日韩午夜激情免费电影| 老司机精品视频在线| 精品福利一区二区三区| 国产在线麻豆精品观看| 日本一区二区成人| 91视视频在线直接观看在线看网页在线看| 日韩伦理电影网| 色嗨嗨av一区二区三区| 五月天婷婷综合| 精品sm在线观看| 成人免费毛片嘿嘿连载视频| 中文天堂在线一区| 色偷偷一区二区三区| 性久久久久久久久| 精品国精品自拍自在线| jiyouzz国产精品久久| 亚洲六月丁香色婷婷综合久久| 精品视频在线看| 精品一区二区三区不卡| 国产欧美日韩视频一区二区| 色综合中文综合网| 成人va在线观看| 一区二区三区美女视频| 欧美一级片在线观看| 国产成人免费视频| 亚洲综合在线第一页| 欧美成人性战久久| 99r国产精品| 午夜精品福利一区二区蜜股av| 精品日韩在线一区| 色哟哟日韩精品| 久色婷婷小香蕉久久| 日韩美女久久久| 欧美成人猛片aaaaaaa| 99久久久国产精品免费蜜臀| 天堂影院一区二区| 综合久久久久久| 26uuu成人网一区二区三区| 91网址在线看| 国产精品 日产精品 欧美精品| 亚洲综合区在线| 久久九九99视频| 欧美精品自拍偷拍动漫精品| 成人av网址在线观看| 麻豆精品在线看| 亚洲影视在线播放| 国产三级精品三级在线专区| 精品视频123区在线观看| 欧美吞精做爰啪啪高潮| 粉嫩av一区二区三区粉嫩| 日韩美女啊v在线免费观看| 91精品免费在线| 91香蕉视频黄| 国产91精品一区二区麻豆网站| 亚洲成人激情av| 亚洲女厕所小便bbb| 国产欧美一区二区精品性色| 欧美大片一区二区| 欧美日韩国产大片| 在线免费观看不卡av| 成年人午夜久久久| 国产成人自拍在线| 国内精品伊人久久久久av影院| 三级一区在线视频先锋| 亚洲一卡二卡三卡四卡无卡久久| 国产精品国产三级国产aⅴ原创| 日韩三级在线观看| 678五月天丁香亚洲综合网| 91精品福利视频| 色94色欧美sute亚洲线路一久 | 在线观看国产91| 99riav久久精品riav| 成人av电影免费在线播放| 成人精品视频一区| 成人精品高清在线| 91在线精品一区二区| 成人av在线观| 北条麻妃国产九九精品视频| 高清不卡一区二区在线| 粉嫩av亚洲一区二区图片| 国产91丝袜在线播放0| 国产高清成人在线| 成人免费视频播放| 99精品久久只有精品| 一本到不卡精品视频在线观看| 一本大道av一区二区在线播放| 色婷婷综合久久久中文一区二区| 91热门视频在线观看| 色婷婷综合久色| 欧美丰满嫩嫩电影| 久久影院午夜片一区| 中文字幕乱码久久午夜不卡| 国产精品欧美久久久久一区二区| 国产精品久久久久影院色老大 | 欧美亚洲国产一区二区三区| 欧美中文字幕一区二区三区| 欧美精品精品一区| 久久在线免费观看| 亚洲视频一区在线观看| 午夜a成v人精品| 激情综合网激情| 99热国产精品| 8v天堂国产在线一区二区| 欧美岛国在线观看| 国产精品另类一区| 亚洲已满18点击进入久久| 日本不卡123| 成人精品免费视频| 欧美系列一区二区| 久久综合久久鬼色| 亚洲色图视频免费播放| 亚洲电影在线播放| 国产精品1024| 欧美日韩国产美女| 国产亚洲综合性久久久影院| 亚洲另类在线一区| 狠狠久久亚洲欧美| 在线观看91视频| 久久久久久久性| 亚洲国产视频一区| 国产1区2区3区精品美女| 在线观看av不卡| 国产蜜臀av在线一区二区三区 | 亚洲欧美在线aaa| 丝袜美腿亚洲色图| proumb性欧美在线观看| 日韩欧美一区在线| 亚洲视频一区二区在线观看| 精品一区二区三区在线播放视频| 色综合久久中文综合久久牛| 精品处破学生在线二十三| 亚洲另类一区二区| 风流少妇一区二区| 日韩欧美一区二区免费| 亚洲一区二区五区| 99精品视频中文字幕| 精品久久久久99| 蜜桃在线一区二区三区| 欧美三级电影网| 一区二区三区在线免费播放| 国产成人精品免费网站| 精品嫩草影院久久| 日韩中文欧美在线| 欧美在线免费观看亚洲| 日韩理论片在线| 成人一区二区三区在线观看 | 国产91丝袜在线播放| 精品国内二区三区| 美女网站视频久久| 日韩一区二区在线观看视频| 亚洲综合区在线| 91国产免费看| 亚洲男同性视频| 91在线视频在线| 中文字幕字幕中文在线中不卡视频| 国产麻豆精品在线| 国产亚洲污的网站| 国产成人免费在线观看不卡| 久久毛片高清国产| 国产成人亚洲综合色影视| 久久久久久久av麻豆果冻| 国产一区二区在线看| 久久精品欧美一区二区三区不卡 | 欧美日韩专区在线| 偷拍亚洲欧洲综合| 日韩欧美黄色影院|