亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? invndemo.m

?? MFD-多變量系統頻域設計工具
?? M
字號:
% INVNDEMO Inverse Nyquist Array Demonstration for MFD Toolbox.

echo off
% P. Phaal, December 1987. Revised by J.M.Maciejowski, 11 Dec 87.
% Copyright (c) 1987,1993 by GEC Engineering Research Centre and 
% Cambridge Control Ltd
% History:
%       Made Matlab 4 compatible, 14.7.93, JMM.
%       zeros(kd) changed to zeros(size(kd)) in 2 places, 12.7.93, JMM.
%       MRN0023, MRN0026, MRN0027

clc
echo on

% This demo shows the use of the Inverse Nyquist Array (INA) method.

% It is based on the example in chapter 13 of [O'Reilly87]
% (see references in MFD Tutorial).

% The transfer function matrix:
%
%                      -                        -
%                     |      s+4          1      |
%                     |   ----------    ------   |
%                     |   (s+1)(s+5)     5s+1    |
%            G(s) =   |                          |
%                     |      s+1          2      |
%                     |   ----------    ------   |
%                     |    2                     |
%                     |   s +10s+100     2s+1    |
%                      -                        -
%
% can be expressed in the MFD toolbox as a numerator matrix and
% a common denominator.

pause % Strike any key to continue
clc

% The numerator and common denominator matrices for G(s) are:

num = [0 10 147 1499 4994 2940 400 0  2  33  346 1465 1650  500
       0 10  77  160  134   46   5 0 10 162 1682 6830 6300  1000];

den = [10 167 1763 7671 9715 4150 500];

% Now generate a vector w, containing the frequencies, in radians,
% at which the MVFR matrix is to be evaluated.

w = logspace(-2,2,20);   % Only 20 points to speed up demo

% Then generate the MVFR matrix

fg = mv2fr(num,den,w);

pause % Strike any key to continue
clc

% The inverse nyquist array consists of a matrix of plots, 
%                          -1
% one for each element of G  (jw).

% The function FINV allows the inverse of an MVFR matrix to be 
% computed.

ifg = finv(w,fg);

% Gershgorin circles computed using FRGERSH or FCGERSH allow the
% degree of diagonal dominance to be assessed. Diagonal precompensators
% preserve row dominance of inverse systems. Since we are going to try
% to use a diagonal precompensator, we can only change the column
% dominance, and hence we shall use FCGERSH.

pause % Strike any key to continue
clc

% Plotting the inverse nyquist array (INA).
%                                    -1
% Examining the INA plot shows that G   is not diagonally
% dominant, since the Gershgorin bands overlap the origin.

hold off
subplot(2,2,1); plotnyq(fget(w,ifg,[1 1])); % plot element (1,1)
hold on
circles = fcgersh(w,ifg,1);
plotnyq(circles,'--'); % plot gershgorin circles
hold off
subplot(2,2,2); plotnyq(fget(w,ifg,[1 2])); % plot element (1,2)
subplot(2,2,3); plotnyq(fget(w,ifg,[2 1])); % plot element (2,1)
subplot(2,2,4); plotnyq(fget(w,ifg,[2 2])); % plot element (2,2)
hold on
circles = fcgersh(w,ifg,2);
plotnyq(circles,'--') % plot gershgorin circles
hold off

pause  % Strike any key to continue
clc


% Perron-Frobenius eigenvalues can be used to design a diagonal
%                              -1
% precompensator K so that (GK)   will be diagonally dominant.

% First calculate the normalised comparison matrix of ifg
% (see Reference Manual entry for FPERRON):

m=abs(ifg);
omega = fdiag(w,fdiag(w,m));
nc = fmulf(w,finv(w,omega),m);  % Normalised Comparison Matrix

% Perron-Frobenius eigenvalues and eigenvectors are calculated 
% using FPERRON:

[v,l,r] = fperron(w,nc);

pause % Strike any key to continue
clc

% Plotting the Perron-Frobenius eigenvalues against w indicates the
% frequency ranges over which the system can be made diagonally 
% dominant by a diagonal precompensator. This is possible at those
% frequencies at which the magnitude of the P-F eigenvalue is 
% less than 6 decibels (ie 2).

pause   % Press any key to continue

% Plotting P-F eigenvalues against w
subplot(1,1,1);
plotdb(w,v), title('Perron-Frobenius eigenvalue')

% The display shows that the P-F eigenvalue is smaller than 6dB        
% at all freuencies.

pause  % Strike any key to continue
clc

% In order to find the diagonalising controller K, the left P-F
% eigenvector is examined.  This eigenvector is normalised
% so that the first element is 1.  The second element is then plotted
% against w.

for i=1:length(w), l(i,:)=l(i,:)/l(i,1); end  % Normalise eigenvector

plotdb(w,l(:,2))
title('Perron-Frobenius eigenvector 2')

pause  % Strike any key to continue
clc

% PHLAG can be used to find a transfer function whose gain change
% approximates that of the eigenvector:

[kn,kd] = phlag(-23,8,-7);  % Gain change of -23 dB, flattening out...
			    % above 8 rad/sec at level of -7 dB.

kn, kd

pause   % Press any key to continue
clc

% Compare its gain variation with that of the eigenvector:

k2 = mv2fr(kn,kd,w);  % Frequency response of kn(s)/kd(s)

% Now get its Bode magnitude plot.

hold on
plotdb(w,k2,'--')
hold off

pause
clc

% That looks pretty good. Now we are going to use the precompensator
% K = diag( 1, kd/kn ), but since we are working with inverse responses
% we shall premultiply inv(G) by diag( 1, kn/kd ):

ifk = mv2fr([kd zeros(size(kd));zeros(size(kd)) kn],kd,w); 
ifkg = fmulf(w,ifk,ifg);

pause   % Press any key to continue
clc

%                                                -1 -1
% Plotting the inverse Nyquist array for GK (ie K  G  ):
%                        -1
% The INA shows that (GK)   is diagonally dominant.

subplot(2,2,1);plotnyq(fget(w,ifkg,[1 1])); % plot element (1,1)
circles = fcgersh(w,ifkg,1);
hold on
plotnyq(circles,'--r');   % plot gershgorin circles
hold off
subplot(2,2,2);plotnyq(fget(w,ifkg,[1 2])); % plot element (1,2)
subplot(2,2,3);plotnyq(fget(w,ifkg,[2 1])); % plot element (2,1)
subplot(2,2,4);plotnyq(fget(w,ifkg,[2 2])); % plot element (2,2)
circles = fcgersh(w,ifkg,2);
hold on
plotnyq(circles,'--r')    % plot gershgorin circles
hold off
set(gcf,'Name','Gershgorin circles')

pause  % Strike any key to continue
clc

% The closed loop stability of a system can be determined by
% examining its INA. Since our system is open-loop stable, it
% will be stable with negative feedback provided
% by a diagonal gain matrix, D = diag(di) say, if the Gershgorin
% band swept out by the circles on the i'th diagonal element of 
% the INA does not touch the segment of the negative real axis 
% between the origin and the point -di.

% Ostrowski circles provide narrower bands, which can be used for 
% predicting closed-loop performance, in the same way as the inverse
% Nyquist (Whiteley) locus is used with SISO systems.
% The functions FROST and FCOST compute Ostrowski circles given 
% a diagonal feedback matrix.

% The Ostrowski bands for the (1,1) element of the INA of GK will
% be plotted for different feedback gains.

pause % Strike any key to continue
clc

% Plotting Ostrowski bands for the (1,1) element of the INA of GK
% for different values of d.  The feedback matrix, D = diag([d d]).
% The gains in each loop may be different in general.
% The Ostrowski bands become narrower with increasing feedback gain d.

d = [1 5 10 50];   % These are the cases we shall display.

pause   % Press any key to continue
clc 

for i = 1:4,
	subplot(2,2,i);
	plotnyq(fget(w,ifkg,[1 1]));title(sprintf('d = %2g',d(i)));
	axis([-20,20,-20,20]);
	circles = frost(w,ifkg,1,[d(i) d(i)]);
	hold on
	subplot(2,2,i); plotnyq(circles,'--');
	hold off
end
set(gcf,'Name','Ostrowski circles')

pause  % Strike any key to continue
clc

% Let's see the closed-loop step response if feedback gains of 10
% are applied in each loop.
% First we need state space models of the plant and compensator:

[ga,gb,gc,gd] = mvtf2ss(num,den);  % That's the plant

[ka,kb,kc,kd] = tf2ss(kd,kn); % The scalar kd(s)/kn(s), (1 state)
kb=[0 kb]; kc = [0 ; kc]; % Build the 2x2 compensator with transfer
kd = [1 0 ; 0 kd];        % function diag(1, kd(s)/kn(s))

kb = 10*kb; kd = 10*kd;   % Insert gain 10 in each loop (precompensator)

% Now make the series connection of the compensator with the plant, and
% put unity negative feedback around them.

[gka,gkb,gkc,gkd] = mvser(ka,kb,kc,kd,ga,gb,gc,gd); % Series connection

[ca,cb,cc,cd] = mvfb(gka,gkb,gkc,gkd,0,[0 0],[0;0],eye(2)); % Feedback

pause   % Strike any key to continue
clc

% Now plot the unit step responses over 1.5 seconds:

t = [0:3:150]/100;
y1 = step(ca,cb,cc,cd,1,t);
y2 = step(ca,cb,cc,cd,2,t);
subplot(2,1,1); plot(t,y1), title('Response to demand on output 1')
subplot(2,1,2); plot(t,y2), title('Response to demand on output 2')
set(gcf,'Name','factory')   % Reset figure name to default

pause % Strike any key to return to the demo menu.
echo off
clc


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美色中文字幕| 日日夜夜免费精品视频| 欧美日韩国产影片| 国产精选一区二区三区| 亚洲曰韩产成在线| 国产日本欧洲亚洲| 9191久久久久久久久久久| av一区二区三区在线| 另类的小说在线视频另类成人小视频在线| 国产精品毛片高清在线完整版 | 国产成人av福利| 婷婷激情综合网| 亚洲欧美综合另类在线卡通| 精品国产三级电影在线观看| 欧美麻豆精品久久久久久| 99久久精品免费看| 精品福利在线导航| 在线综合亚洲欧美在线视频| 91国偷自产一区二区开放时间| 国模娜娜一区二区三区| 男人的j进女人的j一区| 亚洲激情六月丁香| 中文字幕在线不卡视频| 久久久九九九九| 久久久三级国产网站| 日韩亚洲欧美成人一区| 欧美日韩在线播放三区| 91久久精品一区二区二区| 99久久er热在这里只有精品15| 国产成人精品免费| 国产一区二区三区国产| 蜜臀av性久久久久蜜臀aⅴ| 午夜成人免费电影| 亚洲香肠在线观看| 丝袜诱惑制服诱惑色一区在线观看 | 天天操天天干天天综合网| 亚洲激情av在线| 亚洲综合一二三区| 夜夜揉揉日日人人青青一国产精品| 亚洲日本乱码在线观看| 综合在线观看色| 亚洲美女少妇撒尿| 亚洲精品成人在线| 亚洲激情图片qvod| 婷婷国产v国产偷v亚洲高清| 天天色 色综合| 国产欧美一区二区三区在线老狼| 一区二区三区毛片| 日韩亚洲欧美在线| 精品日本一线二线三线不卡| 国产精品女主播av| 国产亚洲一本大道中文在线| 久久欧美中文字幕| 国产欧美日韩精品一区| 国产精品国产精品国产专区不片| 一区二区中文视频| 亚洲一区在线观看免费| 首页国产欧美日韩丝袜| 麻豆成人免费电影| 国产成人啪午夜精品网站男同| 丁香一区二区三区| 色综合av在线| 91.成人天堂一区| 久久久久久久久99精品| 成人免费在线视频| 五月激情丁香一区二区三区| 久久成人18免费观看| 国产成人免费9x9x人网站视频| 白白色 亚洲乱淫| 欧美无砖砖区免费| 久久精品国产精品青草| 亚洲一区二区三区四区不卡| 成人欧美一区二区三区视频网页| 国产亚洲综合av| 国产精品久久久久aaaa樱花| 国产精品不卡在线| 亚洲国产成人va在线观看天堂| 一区二区三区丝袜| 免费久久99精品国产| 国产一区二区日韩精品| 亚洲高清视频中文字幕| 91麻豆国产在线观看| 欧美精品色一区二区三区| 精品久久久久久久久久久院品网| 中文字幕中文字幕一区二区| 偷窥少妇高潮呻吟av久久免费| 国产精品一区二区久久不卡 | 福利视频网站一区二区三区| 在线精品视频免费播放| 久久综合九色综合欧美亚洲| 亚洲综合成人在线视频| 国产成人av电影| 欧美一区二区三区视频| 亚洲日本在线a| 狠狠v欧美v日韩v亚洲ⅴ| 在线亚洲高清视频| 国产精品久久久久四虎| 蜜臀久久99精品久久久久宅男| 97国产一区二区| 2020日本不卡一区二区视频| 午夜久久久久久| 97se亚洲国产综合自在线观| 久久蜜桃一区二区| 日本不卡的三区四区五区| 91免费版在线看| 中文字幕乱码久久午夜不卡| 麻豆成人91精品二区三区| 欧美色视频在线| 亚洲日本va午夜在线影院| 国产乱人伦偷精品视频不卡| 91精品国产综合久久精品图片| 一区二区三区中文字幕在线观看| 国产91丝袜在线18| 国产亚洲欧美在线| 国产剧情一区在线| www欧美成人18+| 久久91精品国产91久久小草| 欧美人狂配大交3d怪物一区| 一区二区三区不卡视频 | 91在线国内视频| 国产日韩亚洲欧美综合| 激情五月激情综合网| 日韩午夜激情免费电影| 午夜精品在线看| 欧美三级电影网| 日本大香伊一区二区三区| 国产精品色哟哟| 91精品国产综合久久小美女| 亚欧色一区w666天堂| 日韩精品在线一区| 国产成人精品亚洲午夜麻豆| 国产精品美女久久久久久久| 91蜜桃网址入口| 欧美bbbbb| 中文字幕欧美国产| 欧美日韩精品免费观看视频| 成人听书哪个软件好| 欧美在线观看一二区| 久久久精品天堂| 大美女一区二区三区| 国产精品毛片无遮挡高清| 成人精品小蝌蚪| 亚洲三级在线免费观看| 91啦中文在线观看| 亚洲综合成人在线视频| 777欧美精品| 日韩av一区二区三区四区| 精品国产乱码久久久久久浪潮 | 日本一二三不卡| 成人av在线观| 亚洲精品少妇30p| 欧美日韩一区二区在线观看视频| 亚洲国产精品一区二区久久| 91精品国产综合久久久蜜臀粉嫩| 人妖欧美一区二区| 国产亚洲欧美日韩日本| 99精品久久只有精品| 亚洲无人区一区| 日韩一级成人av| 国产成人免费视频网站高清观看视频| 国产精品国产自产拍高清av| 欧日韩精品视频| 蜜桃91丨九色丨蝌蚪91桃色| 欧美国产1区2区| 欧美色图一区二区三区| 精品一区二区三区在线观看| 中文字幕免费观看一区| 欧美理论在线播放| 国产精品996| 亚洲综合色婷婷| www成人在线观看| 色综合视频在线观看| 捆绑紧缚一区二区三区视频| 中文字幕免费不卡| 91精品国产综合久久香蕉的特点| 国产成人精品午夜视频免费 | 男男视频亚洲欧美| 欧美经典一区二区| 欧美性色欧美a在线播放| 精品一区二区国语对白| 亚洲老司机在线| 精品免费视频.| 日本精品视频一区二区三区| 久久99精品国产麻豆不卡| 亚洲免费av高清| 久久免费看少妇高潮| 亚洲成人av一区二区| 免费成人在线视频观看| 91麻豆成人久久精品二区三区| 欧美国产日本韩| 亚洲欧美日韩人成在线播放| 亚洲午夜羞羞片| 另类小说图片综合网| 91国偷自产一区二区三区观看 | 免费看欧美女人艹b| 国产毛片一区二区| 精品91自产拍在线观看一区| 午夜天堂影视香蕉久久| 欧美国产成人精品| 精品国产精品网麻豆系列|