亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? qr.c

?? GNU Scientific Library,C語言開發的數值方面的函數庫
?? C
字號:
/* linalg/qr.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>#define REAL double#include "givens.c"#include "apply_givens.c"/* Factorise a general M x N matrix A into *   *   A = Q R * * where Q is orthogonal (M x M) and R is upper triangular (M x N). * * Q is stored as a packed set of Householder transformations in the * strict lower triangular part of the input matrix. * * R is stored in the diagonal and upper triangle of the input matrix. * * The full matrix for Q can be obtained as the product * *       Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * *       Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK.  */intgsl_linalg_QR_decomp (gsl_matrix * A, gsl_vector * tau){  const size_t M = A->size1;  const size_t N = A->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else    {      size_t i;      for (i = 0; i < GSL_MIN (M, N); i++)        {          /* Compute the Householder transformation to reduce the j-th             column of the matrix to a multiple of the j-th unit vector */          gsl_vector_view c_full = gsl_matrix_column (A, i);          gsl_vector_view c = gsl_vector_subvector (&(c_full.vector), i, M-i);          double tau_i = gsl_linalg_householder_transform (&(c.vector));          gsl_vector_set (tau, i, tau_i);          /* Apply the transformation to the remaining columns and             update the norms */          if (i + 1 < N)            {              gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1));              gsl_linalg_householder_hm (tau_i, &(c.vector), &(m.matrix));            }        }      return GSL_SUCCESS;    }}/* Solves the system A x = b using the QR factorisation, *  R x = Q^T b * * to obtain x. Based on SLATEC code.  */intgsl_linalg_QR_solve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x){  if (QR->size1 != QR->size2)    {      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);    }  else if (QR->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (QR->size2 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve for x */      gsl_linalg_QR_svx (QR, tau, x);      return GSL_SUCCESS;    }}/* Solves the system A x = b in place using the QR factorisation, *  R x = Q^T b * * to obtain x. Based on SLATEC code.  */intgsl_linalg_QR_svx (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * x){  if (QR->size1 != QR->size2)    {      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);    }  else if (QR->size1 != x->size)    {      GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN);    }  else    {      /* compute rhs = Q^T b */      gsl_linalg_QR_QTvec (QR, tau, x);      /* Solve R x = rhs, storing x in-place */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);      return GSL_SUCCESS;    }}/* Find the least squares solution to the overdetermined system  * *   A x = b  *   * for M >= N using the QR factorization A = Q R.  */intgsl_linalg_QR_lssolve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual){  const size_t M = QR->size1;  const size_t N = QR->size2;  if (M < N)    {      GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN);    }  else if (M != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (N != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else if (M != residual->size)    {      GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);    }  else    {      gsl_matrix_const_view R = gsl_matrix_const_submatrix (QR, 0, 0, N, N);      gsl_vector_view c = gsl_vector_subvector(residual, 0, N);      gsl_vector_memcpy(residual, b);      /* compute rhs = Q^T b */      gsl_linalg_QR_QTvec (QR, tau, residual);      /* Solve R x = rhs */      gsl_vector_memcpy(x, &(c.vector));      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R.matrix), x);      /* Compute residual = b - A x = Q (Q^T b - R x) */            gsl_vector_set_zero(&(c.vector));      gsl_linalg_QR_Qvec(QR, tau, residual);      return GSL_SUCCESS;    }}intgsl_linalg_QR_Rsolve (const gsl_matrix * QR, const gsl_vector * b, gsl_vector * x){  if (QR->size1 != QR->size2)    {      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);    }  else if (QR->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (QR->size2 != x->size)    {      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve R x = b, storing x in-place */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);      return GSL_SUCCESS;    }}intgsl_linalg_QR_Rsvx (const gsl_matrix * QR, gsl_vector * x){  if (QR->size1 != QR->size2)    {      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);    }  else if (QR->size1 != x->size)    {      GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN);    }  else    {      /* Solve R x = b, storing x in-place */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);      return GSL_SUCCESS;    }}intgsl_linalg_R_solve (const gsl_matrix * R, const gsl_vector * b, gsl_vector * x){  if (R->size1 != R->size2)    {      GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);    }  else if (R->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (R->size2 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve R x = b, storing x inplace in b */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x);      return GSL_SUCCESS;    }}intgsl_linalg_R_svx (const gsl_matrix * R, gsl_vector * x){  if (R->size1 != R->size2)    {      GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);    }  else if (R->size2 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Solve R x = b, storing x inplace in b */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x);      return GSL_SUCCESS;    }}/* Form the product Q^T v  from a QR factorized matrix  */intgsl_linalg_QR_QTvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v){  const size_t M = QR->size1;  const size_t N = QR->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (v->size != M)    {      GSL_ERROR ("vector size must be N", GSL_EBADLEN);    }  else    {      size_t i;      /* compute Q^T v */      for (i = 0; i < GSL_MIN (M, N); i++)        {          gsl_vector_const_view c = gsl_matrix_const_column (QR, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i);          gsl_vector_view w = gsl_vector_subvector (v, i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector));        }      return GSL_SUCCESS;    }}intgsl_linalg_QR_Qvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v){  const size_t M = QR->size1;  const size_t N = QR->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (v->size != M)    {      GSL_ERROR ("vector size must be N", GSL_EBADLEN);    }  else    {      size_t i;      /* compute Q^T v */      for (i = GSL_MIN (M, N); i > 0 && i--;)        {          gsl_vector_const_view c = gsl_matrix_const_column (QR, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector),                                                                 i, M - i);          gsl_vector_view w = gsl_vector_subvector (v, i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_hv (ti, &h.vector, &w.vector);        }      return GSL_SUCCESS;    }}/*  Form the orthogonal matrix Q from the packed QR matrix */intgsl_linalg_QR_unpack (const gsl_matrix * QR, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * R){  const size_t M = QR->size1;  const size_t N = QR->size2;  if (Q->size1 != M || Q->size2 != M)    {      GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);    }  else if (R->size1 != M || R->size2 != N)    {      GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR);    }  else if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else    {      size_t i, j;      /* Initialize Q to the identity */      gsl_matrix_set_identity (Q);      for (i = GSL_MIN (M, N); i > 0 && i--;)        {          gsl_vector_const_view c = gsl_matrix_const_column (QR, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector,                                                                i, M - i);          gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);        }      /*  Form the right triangular matrix R from a packed QR matrix */      for (i = 0; i < M; i++)        {          for (j = 0; j < i && j < N; j++)            gsl_matrix_set (R, i, j, 0.0);          for (j = i; j < N; j++)            gsl_matrix_set (R, i, j, gsl_matrix_get (QR, i, j));        }      return GSL_SUCCESS;    }}/* Update a QR factorisation for A= Q R ,  A' = A + u v^T, * Q' R' = QR + u v^T *       = Q (R + Q^T u v^T) *       = Q (R + w v^T) * * where w = Q^T u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes)   */intgsl_linalg_QR_update (gsl_matrix * Q, gsl_matrix * R,                      gsl_vector * w, const gsl_vector * v){  const size_t M = R->size1;  const size_t N = R->size2;  if (Q->size1 != M || Q->size2 != M)    {      GSL_ERROR ("Q matrix must be M x M if R is M x N", GSL_ENOTSQR);    }  else if (w->size != M)    {      GSL_ERROR ("w must be length M if R is M x N", GSL_EBADLEN);    }  else if (v->size != N)    {      GSL_ERROR ("v must be length N if R is M x N", GSL_EBADLEN);    }  else    {      size_t j, k;      double w0;      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0)         J_1^T .... J_(n-1)^T w = +/- |w| e_1         simultaneously applied to R,  H = J_1^T ... J^T_(n-1) R         so that H is upper Hessenberg.  (12.5.2) */      for (k = M - 1; k > 0; k--)        {          double c, s;          double wk = gsl_vector_get (w, k);          double wkm1 = gsl_vector_get (w, k - 1);          create_givens (wkm1, wk, &c, &s);          apply_givens_vec (w, k - 1, k, c, s);          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);        }      w0 = gsl_vector_get (w, 0);      /* Add in w v^T  (Equation 12.5.3) */      for (j = 0; j < N; j++)        {          double r0j = gsl_matrix_get (R, 0, j);          double vj = gsl_vector_get (v, j);          gsl_matrix_set (R, 0, j, r0j + w0 * vj);        }      /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H         Equation 12.5.4 */      for (k = 1; k < GSL_MIN(M,N+1); k++)        {          double c, s;          double diag = gsl_matrix_get (R, k - 1, k - 1);          double offdiag = gsl_matrix_get (R, k, k - 1);          create_givens (diag, offdiag, &c, &s);          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);          gsl_matrix_set (R, k, k - 1, 0.0);    /* exact zero of G^T */        }      return GSL_SUCCESS;    }}intgsl_linalg_QR_QRsolve (gsl_matrix * Q, gsl_matrix * R, const gsl_vector * b, gsl_vector * x){  const size_t M = R->size1;  const size_t N = R->size2;  if (M != N)    {      return GSL_ENOTSQR;    }  else if (Q->size1 != M || b->size != M || x->size != M)    {      return GSL_EBADLEN;    }  else    {      /* compute sol = Q^T b */      gsl_blas_dgemv (CblasTrans, 1.0, Q, b, 0.0, x);      /* Solve R x = sol, storing x in-place */      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x);      return GSL_SUCCESS;    }}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美va日韩va| 欧美视频在线一区二区三区| 日韩一区二区三区免费看| 亚洲国产wwwccc36天堂| 欧美日韩亚洲丝袜制服| 青娱乐精品视频| 精品91自产拍在线观看一区| 国产精品一区二区x88av| 国产精品天美传媒| 色呦呦一区二区三区| 午夜激情一区二区| 欧美成人性福生活免费看| 国产精品伊人色| 国产精品大尺度| 欧美日韩视频专区在线播放| 蜜桃久久久久久| 国产三级一区二区| 一本一道久久a久久精品| 午夜视频一区在线观看| 精品久久久久久久久久久久久久久久久 | 欧美四级电影网| 国产精品美女久久久久aⅴ国产馆| 91成人网在线| 国产.欧美.日韩| 中文字幕一区二区三区蜜月| 欧美影院一区二区| 久久国产精品一区二区| 1024成人网| 欧美一区日韩一区| 成人h动漫精品| 免费成人在线视频观看| 欧美经典一区二区| 欧美日韩国产美| 国产美女视频一区| 亚洲国产成人va在线观看天堂| 精品捆绑美女sm三区| 色一情一伦一子一伦一区| 日本美女一区二区三区视频| 国产丝袜在线精品| 欧美一卡2卡三卡4卡5免费| 成人永久免费视频| 日本伊人精品一区二区三区观看方式| ww亚洲ww在线观看国产| 欧美性受极品xxxx喷水| 亚洲成人激情自拍| 蜜臀av性久久久久蜜臀aⅴ流畅| 成人精品视频.| 亚洲成人中文在线| 国产欧美日韩精品一区| 欧美一区二区三区不卡| 91在线观看地址| 国产精品综合一区二区三区| 香蕉影视欧美成人| 亚洲精品欧美激情| 国产人伦精品一区二区| 欧美一三区三区四区免费在线看 | 福利一区二区在线| 美女免费视频一区| 亚洲成av人片在线观看| 亚洲欧洲另类国产综合| 久久众筹精品私拍模特| 555夜色666亚洲国产免| 在线视频欧美精品| 这里只有精品视频在线观看| 欧美性色欧美a在线播放| 美女一区二区在线观看| 日韩在线a电影| 亚洲电影视频在线| 一区二区三区中文字幕| 中文字幕一区二区三区四区| 欧美激情一区二区| 久久久久国产精品人| 久久亚洲综合色一区二区三区| 日韩一区二区三区电影在线观看 | 粉嫩久久99精品久久久久久夜 | 国产欧美精品一区二区色综合| 欧美成人在线直播| 欧美成人猛片aaaaaaa| 欧美高清视频一二三区 | 国产精品欧美一级免费| 久久久久99精品一区| 久久奇米777| 久久久久久**毛片大全| 国产日韩av一区二区| 国产精品三级久久久久三级| 国产精品免费久久久久| 中文字幕在线不卡视频| 亚洲女同一区二区| 亚洲五月六月丁香激情| 午夜视频在线观看一区二区三区 | 亚洲精品高清视频在线观看| 自拍偷自拍亚洲精品播放| 亚洲欧洲日韩在线| 亚洲午夜在线视频| 麻豆国产精品视频| 国产成人丝袜美腿| 91色乱码一区二区三区| 欧洲日韩一区二区三区| 91精品欧美福利在线观看| 欧美一区二区日韩一区二区| 精品久久久三级丝袜| 欧美国产精品中文字幕| 夜色激情一区二区| 蜜芽一区二区三区| 国产aⅴ综合色| 91色|porny| 日韩免费观看高清完整版 | 日韩小视频在线观看专区| 精品国产一区二区精华| 国产精品久久久久影视| 日日骚欧美日韩| 国产激情一区二区三区| 在线观看91视频| 久久综合精品国产一区二区三区| 136国产福利精品导航| 婷婷综合久久一区二区三区| 国产一区福利在线| 91福利资源站| 欧美精品一区二区三区很污很色的| 欧美经典一区二区| 日韩在线观看一区二区| 9人人澡人人爽人人精品| 欧美老年两性高潮| 中文字幕欧美国产| 天天综合日日夜夜精品| 国产aⅴ综合色| 欧美电影一区二区三区| 国产精品久久久久7777按摩| 日本欧美一区二区三区乱码| 91亚洲精华国产精华精华液| 欧美大片在线观看一区二区| 亚洲欧美日韩系列| 国产精品一线二线三线精华| 欧美日韩一区二区欧美激情| 中文字幕+乱码+中文字幕一区| 亚洲成人av资源| 99久久精品免费| 久久久综合激的五月天| 亚洲bt欧美bt精品777| 成人免费av在线| 亚洲精品一区二区三区蜜桃下载| 亚洲妇女屁股眼交7| 成人午夜精品在线| 亚洲精品一区二区三区99| 亚洲国产精品精华液网站| www.av亚洲| 久久美女艺术照精彩视频福利播放| 三级欧美在线一区| 欧美日韩一区成人| 一区二区三区免费网站| 成人黄色av网站在线| 久久精品视频在线免费观看| 三级欧美韩日大片在线看| 91成人看片片| 自拍偷拍欧美精品| 成人不卡免费av| 日本一区二区三区电影| 国产一区二区成人久久免费影院| 91精品视频网| 日本伊人色综合网| 欧美一区二区三区在线观看| 亚洲国产综合人成综合网站| 色久综合一二码| 亚洲男帅同性gay1069| 99久久精品国产麻豆演员表| 国产亲近乱来精品视频 | 99久久精品国产导航| 欧美激情在线看| 国产999精品久久久久久绿帽| 久久影院视频免费| 国产主播一区二区| 久久久三级国产网站| 国产伦精品一区二区三区免费| www国产成人免费观看视频 深夜成人网 | 成人深夜在线观看| 国产精品视频观看| 成人美女视频在线观看| 国产精品免费视频观看| 色综合婷婷久久| 亚洲午夜久久久久久久久久久| 欧美在线小视频| 日韩精品午夜视频| 欧美成人欧美edvon| 国产一区二区三区四区五区入口| 久久日一线二线三线suv| 国产成人日日夜夜| 亚洲少妇最新在线视频| 欧美视频一区在线| 欧美aaaaa成人免费观看视频| 欧美一卡2卡三卡4卡5免费| 国产一区二区免费看| 中文字幕在线不卡| 色一情一乱一乱一91av| 国产寡妇亲子伦一区二区| 综合久久给合久久狠狠狠97色 | 麻豆久久久久久久| 国产丝袜美腿一区二区三区| 色婷婷激情久久| 日韩成人dvd| 国产精品婷婷午夜在线观看|