?? k0.cpp
字號:
//// k0.cpp//// k0.cpp,v 1.5 2003/05/22 08:55:20 frenger Exp//#include <cmath>#include "base/itassert.h"#include "../src/base/bessel/bessel_internal.h"using namespace itpp;// This is slightly modified routine from the Cephes library, see http://www.netlib.org/cephes/// // According to licence agreement this software can be used freely.///* k0.c * * Modified Bessel function, third kind, order zero * * doule x, y, k0(); * * y = k0( x ); * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * ACCURACY: * * Tested at 2000 random points between 0 and 8. Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.2e-15 1.6e-16 * * ERROR MESSAGES: * * message condition value returned * K0 domain x <= 0 MAXNUM *//* * Modified Bessel function, third kind, order zero, * exponentially scaled * * double x, y, k0e(); * * y = k0e( x ); * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.4e-15 1.4e-16 * See k0(). *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*//* Chebyshev coefficients for K0(x) + log(x/2) I0(x) * in the interval [0,2]. The odd order coefficients are all * zero; only the even order coefficients are listed. * * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. */static double A[] ={ 1.37446543561352307156E-16, 4.25981614279661018399E-14, 1.03496952576338420167E-11, 1.90451637722020886025E-9, 2.53479107902614945675E-7, 2.28621210311945178607E-5, 1.26461541144692592338E-3, 3.59799365153615016266E-2, 3.44289899924628486886E-1,-5.35327393233902768720E-1};/* Chebyshev coefficients for exp(x) sqrt(x) K0(x) * in the inverted interval [2,infinity]. * * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). */static double B[] = { 5.30043377268626276149E-18,-1.64758043015242134646E-17, 5.21039150503902756861E-17,-1.67823109680541210385E-16, 5.51205597852431940784E-16,-1.84859337734377901440E-15, 6.34007647740507060557E-15,-2.22751332699166985548E-14, 8.03289077536357521100E-14,-2.98009692317273043925E-13, 1.14034058820847496303E-12,-4.51459788337394416547E-12, 1.85594911495471785253E-11,-7.95748924447710747776E-11, 3.57739728140030116597E-10,-1.69753450938905987466E-9, 8.57403401741422608519E-9,-4.66048989768794782956E-8, 2.76681363944501510342E-7,-1.83175552271911948767E-6, 1.39498137188764993662E-5,-1.28495495816278026384E-4, 1.56988388573005337491E-3,-3.14481013119645005427E-2, 2.44030308206595545468E0};#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */double k0(double x){ double y, z; if( x <= 0.0 ) { it_warning("besselk:: argument domain error"); //mtherr( "k0", DOMAIN ); return( MAXNUM ); } if( x <= 2.0 ) { y = x * x - 2.0; y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x); return( y ); } z = 8.0/x - 2.0; y = exp(-x) * chbevl( z, B, 25 ) / sqrt(x); return(y);}double k0e(double x){ double y; if( x <= 0.0 ) { it_warning("besselk:: argument domain error"); //mtherr( "k0e", DOMAIN ); return( MAXNUM ); } if( x <= 2.0 ) { y = x * x - 2.0; y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x); return( y * exp(x) ); } y = chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x); return(y);}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -