亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? exampsys.tex

?? 隱馬爾科夫模型工具箱
?? TEX
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
\begin{verbatim}    HSLab noname\end{verbatim}This will cause a window to appear with a waveform display area in the upperhalf and a row of buttons, including a record button in the lower half.  Whenthe name of a normal file is given as argument, \htool{HSLab} displays itscontents.  Here, the special file name \texttt{noname} indicates that new datais to be recorded. \htool{HSLab} makes no special provision for prompting theuser.  However, each time the record button is pressed, it writes thesubsequent recording alternately to a file called \verb|noname_0.| and to afile called \verb|noname_1.|.  Thus, it is simple to write a shell scriptwhich for each successive line of a prompt file, outputs the prompt, waits foreither \verb|noname_0.| or \verb|noname_1.| to appear, and then renamesthe file to the name prepending the prompt (see Fig.~\href{f:step3}).\index{extensions!wav@\texttt{wav}}While the prompts for training sentences already were provided for above, theprompts for test sentences need to be generated before recording them. The tool\index{prompt script!generationof}\index{hsgen@\htool{HSGen}}\htool{HSGen} can be used to do this by randomly traversing a word network and outputting each word encountered. For example, typing\begin{verbatim}    HSGen -l -n 200 wdnet dict > testprompts\end{verbatim}would generate 200 numbered test utterances, the first few of which would look something like:\begin{verbatim}    1.  PHONE YOUNG      2.  DIAL OH SIX SEVEN SEVEN OH ZERO    3.  DIAL SEVEN NINE OH OH EIGHT SEVEN NINE NINE    4.  DIAL SIX NINE SIX TWO NINE FOUR ZERO NINE EIGHT      5.  CALL JULIAN ODELL    ... etc\end{verbatim}These can be piped to construct the prompt file \texttt{testprompts} forthe required test data.\subsection{Step 4 - Creating the Transcription Files}\sidefig{step3}{50}{Step 3}{-4}{}To train a set of HMMs, every file of training data must have an associatedphone level transcription.  Since there is no hand labelled data to bootstrap aset of models, a flat-start scheme will be used instead.  To do this, two setsof phone transcriptions will be needed.  The set used initially will have noshort-pause (\texttt{sp}) models between words.  Then once reasonable phonemodels have been generated, an \texttt{sp} model will be inserted between wordsto take care of any pauses introduced by the speaker.\index{flat start}The starting point for both sets of phone transcription is anorthographic\index{transcription!orthographic} transcription in \HTK\ labelformat.  This can be created fairly easily using a text editor or a scriptinglanguage.An example of this is found in the RM Demo at point 0.4. Alternatively, thescript \texttt{prompts2mlf} has been provided in the \texttt{HTKTutorial}directory.The effect should be to convert the prompt utterances exampled above into thefollowing form:\begin{verbatim}    #!MLF!#    "*/S0001.lab"    ONE     VALIDATED     ACTS     OF     SCHOOL     DISTRICTS    .    "*/S0002.lab"    TWO     OTHER     CASES     ALSO     WERE     UNDER     ADVISEMENT    .    "*/S0003.lab"     BOTH     FIGURES     (etc.)\end{verbatim}As can be seen, the prompt labels need to be converted into path names, eachword should be written on a single line and each utterance should be terminatedby a single period on its own.  The first line of the file just identifies thefile as a \textit{Master Label File} (MLF).  This is a single file containing acomplete set of transcriptions.  \HTK\ allows each individual transcription tobe stored in its own file but it is more efficient to use an MLF.\index{master label files}\index{MLF}The form of the path name used in the MLF deserves some explanation since it isreally a \textit{pattern} and not a name.\index{master label files!patterns}When \HTK\ processes speech files, it expects to find a transcription (or {\it label file}) with the same name but a different extension.  Thus, if the file\texttt{/root/sjy/data/S0001.wav} was being processed, \HTK\ would look for alabel file called \texttt{/root/sjy/data/S0001.lab}.  When MLF files are used,\HTK\ scans the file for a pattern which matches the required label file name.However, an asterix will match any character string and hence the pattern usedin the example is in effect path independent.  It therefore allows the sametranscriptions to be used with different versions of the speech data to bestored in different locations.Once the word level MLF has been created, phone level MLFs can be generatedusing the label editor \htool{HLEd}\index{hled@\htool{HLEd}}. For example,assuming that the above word level MLF is stored in the file\texttt{words.mlf}, the command\begin{verbatim}    HLEd -l '*' -d dict -i phones0.mlf mkphones0.led words.mlf\end{verbatim}will generate a phone level transcription of the following formwhere the \texttt{-l} option is needed to generate the path '\verb+*+' in the output patterns.\begin{verbatim}    #!MLF!#    "*/S0001.lab"    sil    w    ah    n    v    ae    l    ih    d    .. etc\end{verbatim}This process is illustrated in Fig.~\href{f:step4}.The \htool{HLEd} edit script \texttt{mkphones0.led} contains the following commands\begin{verbatim}   EX   IS sil sil   DE sp\end{verbatim}The expand \texttt{EX} command replaces each word in \texttt{words.mlf} by the corresponding pronunciation in the dictionary file \texttt{dict}.  The \texttt{IS}command inserts a silence model \texttt{sil} at the start and end ofevery utterance.  Finally, the delete \texttt{DE} command deletes allshort-pause \texttt{sp} labels, which are not wanted in the transcriptionlabels at this point.  \centrefig{step4}{60}{Step 4}\subsection{Step 5 - Coding the Data}The final stage of data preparation is to parameterise the raw speechwaveforms into sequences of feature vectors.  \HTK\ support both FFT-based\index{analysis!FFT-based}and LPC-based\index{analysis!LPC-based} analysis.  Here Mel Frequency Cepstral Coefficients (MFCCs)\index{MFCC coefficients},which are derived from FFT-based log spectra, will be used.Coding can be performed using the tool \htool{HCopy}\index{hcopy@\htool{HCopy}} configured to\index{coding}automatically convert its input into MFCC vectors.  To do this, a configurationfile (\texttt{config}) is needed which specifies all of the conversion parameters\index{parameterisation}. Reasonable settings for these are as follows\begin{verbatim}    # Coding parameters    TARGETKIND = MFCC_0    TARGETRATE = 100000.0    SAVECOMPRESSED = T    SAVEWITHCRC = T    WINDOWSIZE = 250000.0    USEHAMMING = T    PREEMCOEF = 0.97    NUMCHANS = 26    CEPLIFTER = 22    NUMCEPS = 12    ENORMALISE = F\end{verbatim}Some of these settings are in fact the default setting, but theyare given explicitly here for completeness.  In brief, they specifythat the target parameters are to be MFCC using $C_0$ as the energycomponent, the frame period is 10msec (\HTK\ uses units of 100ns),the output should be saved in compressed format, and a crc checksum shouldbe added.  The FFT should use a Hamming window and the signal shouldhave first order preemphasis applied using a coefficient of 0.97.The filterbank should have 26 channels and 12 MFCC coefficients shouldbe output. The variable \texttt{ENORMALISE} is by default true and performs energynormalisation on recorded audio files. It cannot be used with live audio andsince the target system is for live audio, this variable should be set tofalse.Note that explicitly creating coded data files is not necessary, as coding canbe done "on-the-fly" from the original waveform files by specifying theappropriate configuration file (as above) with the relevant HTK tools. However,creating these files reduces the amount of preprocessing required duringtraining, which itself can be a time-consuming process.To run \htool{HCopy},  a list ofeach source file and its corresponding output file is needed.  For example,the first few lines might look like\index{extensions!mfc@\texttt{mfc}}\begin{verbatim}    /root/sjy/waves/S0001.wav /root/sjy/train/S0001.mfc    /root/sjy/waves/S0002.wav /root/sjy/train/S0002.mfc    /root/sjy/waves/S0003.wav /root/sjy/train/S0003.mfc    /root/sjy/waves/S0004.wav /root/sjy/train/S0004.mfc    (etc.)\end{verbatim}Files containing lists of files are referred to as script files\footnote{Not to be confused with files containing \textit{edit} scripts}and\index{extensions!scp@\texttt{scp}}by convention are given the extension \texttt{scp} (although \HTK\ does not demand this).  Script files are specified using the standard\texttt{-S} option and their contents are read simply as extensionsto the command line.  Thus, they avoid the need for command lines withseveral thousand arguments\footnote{Most UNIX shells, especially the C shell, only allow a limited andquite small number of arguments.}.\index{command line!arguments}\index{command line!script files}\centrefig{step5}{100}{Step 5}\noindentAssuming that the above script is stored in the file \texttt{codetr.scp},the training data would be coded by executing\begin{verbatim}    HCopy -T 1 -C config -S codetr.scp\end{verbatim}This is illustrated in Fig.~\href{f:step5}. A similar procedure isused to code the test data (using \verb|TARGETKIND = MFCC_0_D_A| inconfig) after which all of the pieces are in place to start trainingthe HMMs. \mysect{Creating Monophone HMMs}{egcreatmono}In this section, the creation of a well-trained set of single-Gaussianmonophone HMMs will be described.  The starting point will bea set of identical monophone HMMs in which every mean and variance isidentical.  These are then retrained, short-pause models areadded and the silence model is extended slightly.  The monophonesare then retrained.Some of the dictionary entries have multiple pronunciations.  However,when \htool{HLEd} was used to expand the word level MLF to create thephone level MLFs, it arbitrarily selected the first pronunciation it found.Once reasonable monophone HMMs have been created, the recogniser tool\htool{HVite} can be used to perform a \textit{forced alignment} of\index{forced alignment}the training data.  By this means, a new phone level MLF is created in whichthe choice of pronunciations depends on the acoustic evidence.  This newMLF can be used to perform a final re-estimation of the monophone HMMs.\index{monophone HMM!construction of}\subsection{Step 6 - Creating Flat Start Monophones}The first step in HMM training is to define a prototype model.  Theparameters of this model are not important, its purpose is todefine the model topology.  For phone-based systems,  a goodtopology to use is 3-state left-right with no skips such as the following\begin{verbatim}    ~o <VecSize> 39 <MFCC_0_D_A>    ~h "proto"    <BeginHMM>     <NumStates> 5     <State> 2        <Mean> 39          0.0 0.0 0.0 ...        <Variance> 39          1.0 1.0 1.0 ...     <State> 3        <Mean> 39          0.0 0.0 0.0 ...        <Variance> 39          1.0 1.0 1.0 ...     <State> 4        <Mean> 39          0.0 0.0 0.0 ...        <Variance> 39

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲一区二区三区爽爽爽爽爽| 亚洲午夜激情网站| 欧美极品aⅴ影院| 亚洲天堂av老司机| 亚洲午夜免费福利视频| 日日夜夜精品免费视频| 国产一区二三区| 99久久免费国产| 欧美一级在线视频| 亚洲国产精品ⅴa在线观看| 亚洲综合免费观看高清完整版在线 | 国产午夜一区二区三区| 欧美亚日韩国产aⅴ精品中极品| 国产剧情一区在线| 91免费精品国自产拍在线不卡| 69av一区二区三区| 国产欧美一区二区精品婷婷| 一区二区三区**美女毛片| 免费成人在线观看视频| av一区二区三区在线| 日韩美女主播在线视频一区二区三区 | 日本免费在线视频不卡一不卡二 | 在线观看成人免费视频| 国产午夜精品美女毛片视频| 一区二区三区精品| 福利一区二区在线| 精品1区2区在线观看| 亚洲成人av资源| 日本大香伊一区二区三区| 久久婷婷国产综合精品青草| 色婷婷激情久久| 日本一区免费视频| 狠狠色狠狠色综合系列| 欧美日本乱大交xxxxx| 亚洲激情图片小说视频| 91影院在线免费观看| 国产精品国产精品国产专区不片| 另类人妖一区二区av| 777亚洲妇女| 日韩1区2区3区| 91精品国产综合久久精品app| 亚洲一区二区三区四区在线| 99精品欧美一区二区三区小说 | 自拍偷拍亚洲综合| 欧美成人一区二区三区片免费| 亚洲免费在线观看视频| 成人免费毛片嘿嘿连载视频| 国产日韩综合av| 国产不卡在线一区| 中文字幕欧美日韩一区| 97精品视频在线观看自产线路二| 国产精品久久久久久久久久久免费看 | 欧美日韩亚洲综合在线| 亚洲一区二区精品3399| 91精品国产综合久久婷婷香蕉| 日韩精品亚洲一区| 久久免费电影网| 一本到三区不卡视频| 久久久久国产成人精品亚洲午夜| 国产成都精品91一区二区三| 国产日韩视频一区二区三区| 国产99久久久久| 一区二区三区四区高清精品免费观看| 一本色道**综合亚洲精品蜜桃冫| 亚洲国产日韩综合久久精品| 日韩欧美在线综合网| 成人免费视频视频| 婷婷久久综合九色综合绿巨人| 欧美一区二区日韩| 91在线免费看| 久久不见久久见中文字幕免费| ●精品国产综合乱码久久久久 | 亚洲欧美日韩中文播放 | 欧美精品一区二区三区四区| 成人在线综合网| 免费观看在线色综合| 中文字幕制服丝袜一区二区三区| 欧美日韩高清影院| 成人18精品视频| 精品亚洲国内自在自线福利| 亚洲最色的网站| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 欧美福利电影网| 欧美色倩网站大全免费| 91麻豆国产香蕉久久精品| 成人av集中营| 美女一区二区三区在线观看| 一区二区成人在线| 亚洲精品综合在线| 18成人在线视频| 成人免费小视频| 国产精品二区一区二区aⅴ污介绍| 欧美mv日韩mv| 久久综合九色综合欧美98| 日韩欧美国产三级| 日韩一区二区影院| 日韩午夜激情av| 精品噜噜噜噜久久久久久久久试看| 欧美日韩亚洲丝袜制服| 91成人在线观看喷潮| 日本乱人伦一区| 欧美伊人精品成人久久综合97| 色偷偷久久人人79超碰人人澡| 91在线视频播放| 欧美性大战久久久久久久蜜臀| 欧美日韩视频在线一区二区| 538在线一区二区精品国产| 欧美一区二区三区四区高清 | 国产色91在线| 亚洲男人的天堂网| 午夜精品免费在线| 久国产精品韩国三级视频| 国产不卡在线视频| 色哟哟亚洲精品| 欧美二区乱c少妇| 日本一区二区三区国色天香| 亚洲精品视频在线| 日韩电影在线一区二区| 91伊人久久大香线蕉| 91视频xxxx| 99久久婷婷国产综合精品电影 | 日本韩国欧美三级| 欧美一区午夜精品| 欧美国产乱子伦| 日韩成人免费在线| av影院午夜一区| 日韩精品影音先锋| 亚洲乱码中文字幕| 国产剧情一区二区| 欧美少妇bbb| 亚洲色欲色欲www在线观看| 三级亚洲高清视频| 成人av免费在线| 国产日产精品一区| 天天影视色香欲综合网老头| 成人免费高清视频| 精品国产乱码久久| 美国十次综合导航| 欧美剧在线免费观看网站| 日本精品一区二区三区高清| 91精品中文字幕一区二区三区| 欧美国产精品v| 国产成人啪免费观看软件| 欧美一卡二卡三卡| 日本vs亚洲vs韩国一区三区二区 | 欧美日韩精品综合在线| 国产精品第一页第二页第三页| 国产一区视频网站| 日韩视频在线永久播放| 日韩电影免费在线看| 欧美日韩国产高清一区二区三区| 夜夜亚洲天天久久| 欧美性感一类影片在线播放| 亚洲精品高清在线| 在线观看国产日韩| 午夜亚洲国产au精品一区二区| 欧洲一区二区三区免费视频| 一区二区三区欧美激情| 在线观看亚洲专区| 丝袜美腿亚洲一区二区图片| 大美女一区二区三区| 中文字幕av资源一区| 成人国产精品免费| 亚洲丝袜精品丝袜在线| 91久久国产最好的精华液| 亚洲观看高清完整版在线观看 | 欧美午夜片在线看| 奇米影视一区二区三区| 日韩免费看的电影| 国产精品一区二区黑丝| 亚洲欧美综合另类在线卡通| 91福利小视频| 久草精品在线观看| 亚洲午夜电影在线| 欧美影院精品一区| 国产精品一区久久久久| 亚洲美女一区二区三区| 日韩欧美综合一区| av毛片久久久久**hd| 日韩主播视频在线| 中文乱码免费一区二区| 欧美大片免费久久精品三p| 国产欧美日韩视频一区二区| 成人免费高清在线| 日本成人在线不卡视频| 中文字幕av免费专区久久| 欧美久久久影院| 不卡一区二区三区四区| 老司机精品视频线观看86| 亚洲欧美日韩人成在线播放| 欧美大片在线观看一区| 欧美午夜电影网| eeuss鲁片一区二区三区在线看| 日韩精品亚洲一区二区三区免费| ㊣最新国产の精品bt伙计久久| 欧美成人猛片aaaaaaa| 在线免费不卡电影| 91麻豆自制传媒国产之光| 国产成人啪免费观看软件| 国产一区二区三区黄视频 |