亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? exampsys.tex

?? 隱馬爾科夫模型工具箱
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
          -p 0.0 -s 5.0 dict tiedlist\end{verbatim}The options \texttt{-p} and \texttt{-s} set the \textit{word insertion penalty}\index{word insertion penalty}and the \textit{grammar scale factor}, \index{grammar scale factor}respectively.  The word insertion penaltyis a fixed value added to each token when it transits from the end of one wordto the start of the next.  The grammar scale factor is the amount by whichthe language model probability is scaled before being added to each token  as it transits from the end of one wordto the start of the next.  These parameters can have a significant effecton recognition performance and hence, some tuning on development test datais well worthwhile.The dictionary contains monophone transcriptions whereas the supplied HMM listcontains word internal triphones.  \htool{HVite}\index{hvite@\htool{HVite}} will make the necessary conversions when loading the word network \texttt{wdnet}.  However, if the HMM list contained both monophones and context-dependent phonesthen \htool{HVite} would become confused.  The required form of word-internal network\index{networks!word-internal} expansion can be forced by setting the configuration variable\texttt{FORCECXTEXP}\index{forcecxtexp@\texttt{FORCECXTEXP}} to true and \texttt{ALLOWXWRDEXP}\index{allowxwrdexp@\texttt{ALLOWXWRDEXP}} to false (see chapter~\ref{c:netdict} for details).\index{accuracy figure}Assuming that the MLF \texttt{testref.mlf} contains word level transcriptionsfor each test file\footnote{The \htool{HLEd} tool may have to be used to insert silences at the start and end of each transcription or alternatively\htool{HResults} can be used to ignore silences (or any other symbols) usingthe \texttt{-e} option}, the actualperformance can be determined by running \htool{HResults} as follows\begin{verbatim}    HResults -I testref.mlf tiedlist recout.mlf\end{verbatim}the result would be a print-out of the form\begin{verbatim}    ====================== HTK Results Analysis ==============      Date: Sun Oct 22 16:14:45 1995      Ref : testrefs.mlf      Rec : recout.mlf    ------------------------ Overall Results -----------------    SENT: %Correct=98.50 [H=197, S=3, N=200]    WORD: %Corr=99.77, Acc=99.65 [H=853, D=1, S=1, I=1, N=855]    ==========================================================\end{verbatim}The line starting with \texttt{SENT:} indicates that of the 200 test utterances,197  (98.50\%) were correctly recognised.  The following line starting with \texttt{WORD:} gives the word level statistics and indicates that of the 855 words in total,853 (99.77\%) were recognised correctly.  There was 1 deletion error (\texttt{D}), 1 substitution\index{recognition!results analysis}error (\texttt{S}) and 1 insertion error (\texttt{I}).  The accuracy figure (\texttt{Acc})of 99.65\% is lower than the percentage correct (\texttt{Cor}) because it takesaccount of the insertion errors which the latter ignores.\centrefig{step11}{120}{Step 11}\mysect{Running the Recogniser Live}{egreclive}The recogniser can also be run with live input\index{live input}.  \index{recognition!direct audio input}To do this it is onlynecessary to set the configuration variables needed to convert the inputaudio to the correct form of  parameterisation.  Specifically, the followingneeds to be appended to the configuration file \texttt{config} tocreate a new configuration file \texttt{config2}\begin{verbatim}    # Waveform capture    SOURCERATE=625.0    SOURCEKIND=HAUDIO    SOURCEFORMAT=HTK    ENORMALISE=F    USESILDET=T    MEASURESIL=F    OUTSILWARN=T\end{verbatim}These indicate that the source is direct audio with sample period 62.5$\mu$secs.  The silence detector is enabled and a measurement of the backgroundspeech/silence levels should be made at start-up.  The final line makes surethat a warning is printed when this silence measurement is being made.Once the configuration file has been set-up for direct audio input,\htool{HVite} can be run as in the previous step except that no files need begiven as arguments\begin{verbatim}    HVite -H hmm15/macros -H hmm15/hmmdefs -C config2 \          -w wdnet -p 0.0 -s 5.0 dict tiedlist\end{verbatim}On start-up, \htool{HVite} will prompt the user to speak anarbitrary sentence (approx. 4 secs) in order to measure the speech andbackground silence levels. It will then repeatedly recognise and, if tracelevel bit 1 is set, it will output each utterance to the terminal. A typicalsession is as follows\index{recognition!output}\begin{verbatim}   Read 1648 physical / 4131 logical HMMs   Read lattice with 26 nodes / 52 arcs   Created network with 123 nodes / 151 links   READY[1]>   Please speak sentence - measuring levels   Level measurement completed   DIAL FOUR SIX FOUR TWO FOUR OH          == [303 frames] -95.5773 [Ac=-28630.2 LM=-329.8] (Act=21.8)      READY[2]>    DIAL ZERO EIGHT SIX TWO         == [228 frames] -99.3758 [Ac=-22402.2 LM=-255.5] (Act=21.8)      READY[3]>    etc\end{verbatim}During loading, information will be printed out regarding the differentrecogniser components. The physical models are the distinct HMMs used by the system, while the logical models include all model names. The number of logical models is higher than the number of physical models because many logically distinct models have been determined to be physically identical and have been merged during the previous model building steps. The latticeinformation refers to the number of links and nodes in the recognition syntax.The network information refers to actual recognition network built byexpanding the lattice using the current HMM set, dictionary and any contextexpansion rules specified.After each utterance, the numerical information gives the total numberof frames, the average log likelihood per frame, the total acoustic score,the total language model score and the average number of models active.Note that if it was required to recognise a new name, then thefollowing two changes would be needed\begin{enumerate}\item the grammar would be altered to include the new name\item a pronunciation for the new name would be added to the dictionary\end{enumerate}If the new name required triphones which did not exist, then they could becreated by loading the existing triphone set into\htool{HHEd}\index{hhed@\htool{HHEd}}, loading the decision trees using the\texttt{LT} command\index{lt@\texttt{LT} command} and then using the\texttt{AU} command\index{au@\texttt{AU} command} to generate a new completetriphone set.\index{triphones!synthesising unseen}\mysect{Adapting the HMMs}{exsysadapt}The previous sections have described the stages required to build a simple voice dialling system. To simplify this process, speaker dependent models were developed using training data from a single user. Consequently, recognition accuracy for any other users would be poor.To overcome this limitation, a set of speaker independent models could be constructed, but this would require large amounts of training data from a variety of speakers. An alternative is to adapt the current speaker dependent models to the characteristics of a new speaker using a small amount of training or adaptation data\index{adaptation}. In general, adaptation techniques are applied to well trained speaker independent model sets to enable them to better model the characteristics of particular speakers.\HTK\ supports both supervised adaptation\index{adaptation!supervised adaptation}, where the true transcription of the data is known and unsupervised adaptation\index{adaptation!unsupervised adaptation} where thetranscription is hypothesised.In \HTK\ supervised adaptation is performed offline by\htool{HEAdapt} using maximum likelihood linear regression(MLLR)\index{adaptation!MLLR} and/or maximum a-posteriori (MAP)\index{adaptation!MAP} techniques to estimatea series of transforms or a transformed model set, that reduces the mismatch between the current model set and the adaptation data. Unsupervised adaptation is provided by \htool{HVite} (see section~\ref{s:unsup_adapt}), using just MLLR.The following sections describe offline supervised adaptation (usingMLLR) with the use of \htool{HEAdapt}.\subsection{Step 12 - Preparation of the Adaptation Data}As in normal recogniser development, the first stage in adaptation involves data preparation. Speech data from the new user is required for both adapting the models and testing the adapted system. The data can be obtained in a similar fashion to that taken to prepare the original test data.Initially, prompt lists for the adaptation and test data will be generated using \htool{HSGen}. For example, typing\begin{verbatim}    HSGen -l -n 20 wdnet dict > promptsAdapt    HSGen -l -n 20 wdnet dict > promptsTest\end{verbatim}\noindentwould produce two prompt files for the adaptation and test data. The amount of adaptation data required will normally be found empirically, but a performance improvement should be observable after just 30 seconds of speech.In this case, around 20 utterances should be sufficient.\htool{HSLab} can be used to record the associated speech.Assuming that the script files \texttt{codeAdapt.scp} and \texttt{codeTest.scp} list the source and output files for the adaptation and test data respectively then both sets of speech can then be coded using the \htool{HCopy} commands given below.\begin{verbatim}    HCopy -C config -S codeAdapt.scp    HCopy -C config -S codeTest.scp\end{verbatim}\noindentThe final stage of preparation involves generating context dependent phone transcriptions of the adaptation data and word level transcriptions of the test data for use in adapting the models and evaluating their performance.The transcriptions of the test data can be obtained using \texttt{prompts2mlf}.To minimize the problem of multiple pronunciations the phone level transcriptions of the adaptation data can be obtained by using \htool{HVite}to perform a \textit{forced alignment} of the adaptation data. Assuming that word level transcriptions are listed in \texttt{adaptWords.mlf}, then thefollowing command will place the phone transcriptions in \texttt{adaptPhones.mlf}.\begin{verbatim}    HVite -l '*' -o SWT -b silence -C config -a -H hmm15/macros \           -H hmm15/hmmdefs -i adaptPhones.mlf -m -t 250.0 \           -I adaptWords.mlf -y lab -S adapt.scp dict tiedlist\end{verbatim}\subsection{Step 13 - Generating the Transforms}\index{adaptation!generating transforms}\htool{HEAdapt} provides two forms of MLLR adaptation depending on theamount of  adaptation data available. If only small amounts areavailable a global transform\index{adaptation!global transforms} canbe generated for every output distribution of every model. As more adaptation data becomes available more specific transforms can be generated for specific groups of Gaussians.To identify the number of transforms that can be estimated using the current adaptation data, \htool{HEAdapt}\index{headapt@\htool{HEAdapt}} uses a regression class tree\index{adaptation!regression tree} to cluster together groups of output distributions that are to undergo the same transformation. The \HTK\ tool \htool{HHEd} can be used to build a regression class tree and store it as part of the HMM set. For example,\begin{verbatim}    HHEd -B -H hmm15/macros -H hmm15/hmmdefs -M hmm16 regtree.hed tiedlist\end{verbatim}\noindentcreates a regression class tree using the models stored in \texttt{hmm15}. The models are written out to the \texttt{hmm16} directory together with the regression class tree information. The \htool{HHEd} edit script \texttt{regtree.hed} contains the following commands\begin{verbatim}    RN "models"    LS "stats"    RC 32 "rtree"\end{verbatim}\noindentThe \texttt{RN}\index{rn@\texttt{RN} command} command assigns anidentifier to the HMM set.The \texttt{LS}\index{ls@\texttt{LS} command} command loads the state occupation statistics file \texttt{stats} generated by the last application of \htool{HERest} which created the models in \texttt{hmm15}. The \texttt{RC}\index{rc@\texttt{RC} command} command then attempts to build a regression class tree with 32 terminal or leaf nodes using these statistics.\htool{HEAdapt} can be used to perform either static adaptation, where all theadaptation data is processed in a single block or incrementaladaptation, where adaptation is performed after a specified number of utterances and this is controlled by the \texttt{-i} option. In this tutorial the default setting of static adaptation will be used.A typical use of \htool{HEAdapt} involves two passes. On the first pass a global adaptation is performed. The second pass then uses the global transformation to transform the model s

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品亚洲国产奇米99| 琪琪久久久久日韩精品| 韩日av一区二区| av在线这里只有精品| 精品欧美乱码久久久久久1区2区| 99在线精品视频| 亚洲精品一区二区三区99| 六月丁香婷婷色狠狠久久| 樱花草国产18久久久久| ㊣最新国产の精品bt伙计久久| 欧美老人xxxx18| 99久久久久久| 福利一区二区在线观看| 免费观看在线综合色| 亚洲国产三级在线| 2020国产精品自拍| 波多野结衣亚洲一区| 国产精品网友自拍| 91美女片黄在线观看| 亚洲成av人片一区二区三区| 8v天堂国产在线一区二区| 亚洲一区二区黄色| 色激情天天射综合网| 国产精品激情偷乱一区二区∴| 99久久综合狠狠综合久久| 亚洲一区二区三区视频在线播放| 亚洲色欲色欲www| 亚洲色图视频网站| 972aa.com艺术欧美| 丁香天五香天堂综合| 精品一区二区三区免费毛片爱| 午夜久久久久久电影| 亚洲成a人在线观看| 一区二区三区四区在线免费观看| 最新日韩av在线| 中文字幕一区在线观看| 亚洲婷婷综合久久一本伊一区| 欧美激情在线一区二区三区| 欧美高清一级片在线观看| 欧美极品少妇xxxxⅹ高跟鞋 | 精品成人私密视频| 欧美成人精品3d动漫h| 日韩精品在线一区| 国产亚洲成av人在线观看导航| 久久久国产精品不卡| 欧美国产一区二区在线观看 | 久久久久久久久久电影| 欧美精品久久一区| 中文字幕制服丝袜一区二区三区 | 国产清纯白嫩初高生在线观看91 | 九九在线精品视频| 麻豆成人综合网| 激情偷乱视频一区二区三区| 国产精品99久久久久久宅男| 国产成人一区二区精品非洲| 波多野结衣中文一区| 色婷婷综合五月| 欧美另类videos死尸| 欧美成人午夜电影| 国产亲近乱来精品视频 | 最新国产成人在线观看| 一区二区三区日本| 日本不卡123| 国内精品国产成人| 久久99国产精品免费| 国产成人免费在线视频| 色婷婷激情久久| 日韩美一区二区三区| 欧美激情一区二区在线| 夜夜操天天操亚洲| 久久99久久精品| 成人av在线资源| 7777精品伊人久久久大香线蕉| 精品国产制服丝袜高跟| 亚洲三级在线免费观看| 美女网站一区二区| 99久免费精品视频在线观看| 51精品秘密在线观看| 亚洲国产精品激情在线观看| 性做久久久久久免费观看 | 成人激情校园春色| 欧美视频在线观看一区二区| 日韩美女一区二区三区四区| 国产精品免费看片| 日本va欧美va瓶| 91啪在线观看| 久久品道一品道久久精品| 亚洲韩国精品一区| 成人免费看片app下载| 精品一二线国产| 狠狠狠色丁香婷婷综合久久五月| 亚洲欧美日韩国产综合| 美女视频黄频大全不卡视频在线播放| 国产jizzjizz一区二区| 91精品久久久久久蜜臀| 亚洲色图清纯唯美| 国产一区二区三区蝌蚪| 欧美美女直播网站| 中文字幕日韩一区| 国产在线不卡一卡二卡三卡四卡| 欧美色手机在线观看| 日本一区二区三区国色天香| 日av在线不卡| 欧美色图12p| 亚洲人精品一区| 国产不卡免费视频| 欧美一区二区在线观看| 天天av天天翘天天综合网| 99久久精品费精品国产一区二区| 精品国产一区久久| 免费在线观看不卡| 欧美丝袜丝交足nylons| 一区二区三区在线视频观看| 东方欧美亚洲色图在线| 欧美精品一区二区三区高清aⅴ | 国产欧美一区二区精品秋霞影院| 欧美精品一区二| 视频在线观看一区| 91免费观看视频| 国产精品国产三级国产| 国产精品亚洲综合一区在线观看| 日韩一区二区视频在线观看| 亚洲成人激情社区| 色菇凉天天综合网| 亚洲色图制服诱惑| 91女人视频在线观看| 国产精品视频观看| 成人av综合在线| 国产精品美女久久久久久久网站| 粉嫩av一区二区三区粉嫩 | 一区二区成人在线| 色综合久久中文综合久久牛| 椎名由奈av一区二区三区| youjizz国产精品| 亚洲欧洲日韩女同| 91麻豆国产精品久久| 亚洲欧美日韩在线不卡| 91激情五月电影| 亚洲chinese男男1069| 91精品视频网| 久久福利视频一区二区| 26uuu久久综合| 狠狠色狠狠色综合系列| 国产欧美视频一区二区三区| 久久精品国产亚洲5555| 亚洲高清视频中文字幕| 午夜精品福利久久久| 日本成人在线视频网站| 国产高清亚洲一区| 一本久久综合亚洲鲁鲁五月天| 成人免费的视频| av高清久久久| 99精品视频一区二区| 日韩女优毛片在线| 蜜臀久久99精品久久久久宅男 | 日韩中文字幕区一区有砖一区| 欧洲亚洲国产日韩| 日韩中文字幕91| 久久精品一区二区三区四区| 成人国产亚洲欧美成人综合网| 亚洲精品一卡二卡| 91精品国产综合久久久久久久| 国产揄拍国内精品对白| 国产精品电影一区二区| 欧美日韩极品在线观看一区| 激情欧美一区二区三区在线观看| 国产精品国产三级国产普通话蜜臀 | 亚洲欧美国产三级| 欧美日韩在线免费视频| 久久99在线观看| 欧美经典一区二区| 久久精品人人做| 国产午夜精品一区二区| 一区二区在线看| 亚洲黄色免费电影| 国产欧美一区二区精品性色 | 欧美午夜视频网站| 91亚洲精品一区二区乱码| 972aa.com艺术欧美| 91成人在线观看喷潮| 欧美日韩精品免费| 日韩欧美在线1卡| 国产欧美日韩视频在线观看| 国产欧美精品一区| 亚洲精品少妇30p| 日韩精品久久理论片| 国产一区二区女| www.日本不卡| 91精品国产综合久久精品图片| 国产亚洲欧美日韩俺去了| 欧美xxxx老人做受| 亚洲欧美另类久久久精品| 色综合天天综合狠狠| 亚洲摸摸操操av| 国产成人精品www牛牛影视| 99re这里只有精品视频首页| 91理论电影在线观看| 欧美一级片免费看| 国产精品毛片大码女人| 亚洲国产精品久久人人爱 |