?? draft-ietf-vrrp-spec-v2-05.txt
字號(hào):
INTERNET-DRAFT S. KnightJanuary 5, 2000 D. Weaver Ascend Communications, Inc. D. Whipple Microsoft, Inc. R. Hinden D. Mitzel P. Hunt Nokia P. Higginson M. Shand Digital Equipment Corp. A. Lindem IBM Corporation Virtual Router Redundancy Protocol <draft-ietf-vrrp-spec-v2-05.txt>Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of [RFC2026]. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This internet draft expires on July 5, 2000.Abstract This memo defines the Virtual Router Redundancy Protocol (VRRP). VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IP address(es) associated withdraft-ietf-vrrp-spec-v2-05.txt [Page 1]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 a virtual router is called the Master, and forwards packets sent to these IP addresses. The election process provides dynamic fail over in the forwarding responsibility should the Master become unavailable. This allows any of the virtual router IP addresses on the LAN to be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host.Table of Contents 1. Introduction...............................................3 2. Required Features..........................................5 3. VRRP Overview..............................................7 4. Sample Configurations......................................8 5. Protocol..................................................11 5.1 VRRP Packet Format....................................11 5.2 IP Field Descriptions.................................11 5.3 VRRP Field Descriptions...............................12 6. Protocol State Machine....................................15 6.1 Parameters per Virtual Router.........................15 6.2 Timers................................................16 6.3 State Transition Diagram..............................16 6.4 State Descriptions....................................16 7. Sending and Receiving VRRP Packets........................20 7.1 Receiving VRRP Packets................................20 7.2 Transmitting Packets..................................20 7.3 Virtual MAC Address...................................21 8. Operational Issues........................................22 8.1 ICMP Redirects........................................22 8.2 Host ARP Requests.....................................22 8.3 Proxy ARP.............................................22 8.4 Potential Forwarding Loop.............................23 9. Operation over FDDI, Token Ring, and ATM LANE.............23 9.1 Operation over FDDI...................................23 9.2 Operation over Token Ring.............................23 9.3 Operation over ATM LANE...............................25 10. Security Considerations...................................26 10.1 No Authentication....................................26 10.2 Simple Text Password.................................26 10.3 IP Authentication Header.............................27 11. Intellectual Property.....................................28 12. Acknowledgments...........................................28 13. References................................................28 14. Authors' Addresses........................................29 15. Changes from RFC2338......................................32draft-ietf-vrrp-spec-v2-05.txt [Page 2]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 20001. Introduction There are a number of methods that an end-host can use to determine its first hop router towards a particular IP destination. These include running (or snooping) a dynamic routing protocol such as Routing Information Protocol [RIP] or OSPF version 2 [OSPF], running an ICMP router discovery client [DISC] or using a statically configured default route. Running a dynamic routing protocol on every end-host may be infeasible for a number of reasons, including administrative overhead, processing overhead, security issues, or lack of a protocol implementation for some platforms. Neighbor or router discovery protocols may require active participation by all hosts on a network, leading to large timer values to reduce protocol overhead in the face of large numbers of hosts. This can result in a significant delay in the detection of a lost (i.e., dead) neighbor, that may introduce unacceptably long "black hole" periods. The use of a statically configured default route is quite popular; it minimizes configuration and processing overhead on the end-host and is supported by virtually every IP implementation. This mode of operation is likely to persist as dynamic host configuration protocols [DHCP] are deployed, which typically provide configuration for an end-host IP address and default gateway. However, this creates a single point of failure. Loss of the default router results in a catastrophic event, isolating all end-hosts that are unable to detect any alternate path that may be available. The Virtual Router Redundancy Protocol (VRRP) is designed to eliminate the single point of failure inherent in the static default routed environment. VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IP address(es) associated with a virtual router is called the Master, and forwards packets sent to these IP addresses. The election process provides dynamic fail-over in the forwarding responsibility should the Master become unavailable. Any of the virtual router's IP addresses on a LAN can then be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. VRRP provides a function similar to a Cisco Systems, Inc. proprietary protocol named Hot Standby Router Protocol (HSRP) [HSRP] and to a Digital Equipment Corporation, Inc. proprietary protocol named IP Standby Protocol [IPSTB].draft-ietf-vrrp-spec-v2-05.txt [Page 3]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119]. The IESG/IETF take no position regarding the validity or scope of any intellectual property right or other rights that might be claimed to pertain to the implementation or use of the technology, or the extent to which any license under such rights might or might not be available. See the IETF IPR web page at http://www.ietf.org/ipr.html for additional information.1.1 Scope The remainder of this document describes the features, design goals, and theory of operation of VRRP. The message formats, protocol processing rules and state machine that guarantee convergence to a single Virtual Router Master are presented. Finally, operational issues related to MAC address mapping, handling of ARP requests, generation of ICMP redirect messages, and security issues are addressed. This protocol is intended for use with IPv4 routers only. A separate specification will be produced if it is decided that similar functionality is desirable in an IPv6 environment.1.2 Definitions VRRP Router A router running the Virtual Router Redundancy Protocol. It may participate in one or more virtual routers. Virtual Router An abstract object managed by VRRP that acts as a default router for hosts on a shared LAN. It consists of a Virtual Router Identifier and a set of associated IP address(es) across a common LAN. A VRRP Router may backup one or more virtual routers. IP Address Owner The VRRP router that has the virtual router's IP address(es) as real interface address(es). This is the router that, when up, will respond to packets addressed to one of these IP addresses for ICMP pings, TCP connections, etc. Primary IP Address An IP address selected from the set of realdraft-ietf-vrrp-spec-v2-05.txt [Page 4]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 interface addresses. One possible selection algorithm is to always select the first address. VRRP advertisements are always sent using the primary IP address as the source of the IP packet. Virtual Router Master The VRRP router that is assuming the responsibility of forwarding packets sent to the IP address(es) associated with the virtual router, and answering ARP requests for these IP addresses. Note that if the IP address owner is available, then it will always become the Master. Virtual Router Backup The set of VRRP routers available to assume forwarding responsibility for a virtual router should the current Master fail.2.0 Required Features This section outlines the set of features that were considered mandatory and that guided the design of VRRP.2.1 IP Address Backup Backup of IP addresses is the primary function of the Virtual Router Redundancy Protocol. While providing election of a Virtual Router Master and the additional functionality described below, the protocol should strive to: - Minimize the duration of black holes. - Minimize the steady state bandwidth overhead and processing complexity. - Function over a wide variety of multiaccess LAN technologies capable of supporting IP traffic. - Provide for election of multiple virtual routers on a network for load balancing - Support of multiple logical IP subnets on a single LAN segment.2.2 Preferred Path Indication A simple model of Master election among a set of redundant routers is to treat each router with equal preference and claim victory after converging to any router as Master. However, there are likely to be many environments where there is a distinct preference (or range ofdraft-ietf-vrrp-spec-v2-05.txt [Page 5]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 preferences) among the set of redundant routers. For example, this preference may be based upon access link cost or speed, router performance or reliability, or other policy considerations. The protocol should allow the expression of this relative path preference in an intuitive manner, and guarantee Master convergence to the most preferential router currently available.2.3 Minimization of Unnecessary Service Disruptions Once Master election has been performed then any unnecessary transitions between Master and Backup routers can result in a disruption in service. The protocol should ensure after Master election that no state transition is triggered by any Backup router of equal or lower preference as long as the Master continues to function properly. Some environments may find it beneficial to avoid the state transition triggered when a router becomes available that is more preferential than the current Master. It may be useful to support an override of the immediate convergence to the preferred path.2.4 Extensible Security The virtual router functionality is applicable to a wide range of internetworking environments that may employ different security policies. The protocol should require minimal configuration and overhead in the insecure operation, provide for strong authentication when increased security is required, and allow integration of new security mechanisms without breaking backwards compatible operation.2.5 Efficient Operation over Extended LANs Sending IP packets on a multiaccess LAN requires mapping from an IP address to a MAC address. The use of the virtual router MAC address in an extended LAN employing learning bridges can have a significant effect on the bandwidth overhead of packets sent to the virtual router. If the virtual router MAC address is never used as the source address in a link level frame then the station location is never learned, resulting in flooding of all packets sent to the virtual router. To improve the efficiency in this environment the protocol should: 1) use the virtual router MAC as the source in a packet sent by the Master to trigger station learning; 2) trigger a message immediately after transitioning to Master to update the station learning; and 3) trigger periodic messages from the Master to maintain the station learning cache.draft-ietf-vrrp-spec-v2-05.txt [Page 6]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 20003.0 VRRP Overview VRRP specifies an election protocol to provide the virtual router function described earlier. All protocol messaging is performed using IP multicast datagrams, thus the protocol can operate over a variety of multiaccess LAN technologies supporting IP multicast. Each VRRP virtual router has a single well-known MAC address allocated to it. This document currently only details the mapping to networks using the IEEE 802 48-bit MAC address. The virtual router MAC address is used as the source in all periodic VRRP messages sent by the Master router to enable bridge learning in an extended LAN. A virtual router is defined by its virtual router identifier (VRID) and a set of IP addresses. A VRRP router may associate a virtual router with its real addresses on an interface, and may also be configured with additional virtual router mappings and priority for virtual routers it is willing to backup. The mapping between VRID and addresses must be coordinated among all VRRP routers on a LAN. However, there is no restriction against reusing a VRID with a different address mapping on different LANs. The scope of each
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -