?? draft-ietf-vrrp-spec-v2-05.txt
字號:
virtual router is restricted to a single LAN. To minimize network traffic, only the Master for each virtual router sends periodic VRRP Advertisement messages. A Backup router will not attempt to pre-empt the Master unless it has higher priority. This eliminates service disruption unless a more preferred path becomes available. It's also possible to administratively prohibit all pre- emption attempts. The only exception is that a VRRP router will always become Master of any virtual router associated with addresses it owns. If the Master becomes unavailable then the highest priority Backup will transition to Master after a short delay, providing a controlled transition of the virtual router responsibility with minimal service interruption. VRRP defines three types of authentication providing simple deployment in insecure environments, added protection against misconfiguration, and strong sender authentication in security conscious environments. Analysis of the protection provided and vulnerability of each mechanism is deferred to Section 10.0 Security Considerations. In addition new authentication types and data can be defined in the future without affecting the format of the fixed portion of the protocol packet, thus preserving backward compatible operation. The VRRP protocol design provides rapid transition from Backup to Master to minimize service interruption, and incorporates optimizations that reduce protocol complexity while guaranteeing controlled Master transition for typical operational scenarios. Thedraft-ietf-vrrp-spec-v2-05.txt [Page 7]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 optimizations result in an election protocol with minimal runtime state requirements, minimal active protocol states, and a single message type and sender. The typical operational scenarios are defined to be two redundant routers and/or distinct path preferences among each router. A side effect when these assumptions are violated (i.e., more than two redundant paths all with equal preference) is that duplicate packets may be forwarded for a brief period during Master election. However, the typical scenario assumptions are likely to cover the vast majority of deployments, loss of the Master router is infrequent, and the expected duration in Master election convergence is quite small ( << 1 second ). Thus the VRRP optimizations represent significant simplifications in the protocol design while incurring an insignificant probability of brief network degradation.4. Sample Configurations4.1 Sample Configuration 1 The following figure shows a simple network with two VRRP routers implementing one virtual router. Note that this example is provided to help understand the protocol, but is not expected to occur in actual practice. +-----------+ +-----------+ | Rtr1 | | Rtr2 | |(MR VRID=1)| |(BR VRID=1)| | | | | VRID=1 +-----------+ +-----------+ IP A ---------->* *<--------- IP B | | | | ------------------+------------+-----+--------+--------+--------+-- ^ ^ ^ ^ | | | | (IP A) (IP A) (IP A) (IP A) | | | | +--+--+ +--+--+ +--+--+ +--+--+ | H1 | | H2 | | H3 | | H4 | +-----+ +-----+ +--+--+ +--+--+ Legend: ---+---+---+-- = Ethernet, Token Ring, or FDDI H = Host computer MR = Master Router BR = Backup Router * = IP Address (IP) = default router for hostsdraft-ietf-vrrp-spec-v2-05.txt [Page 8]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 Eliminating all mention of VRRP (VRID=1) from the figure above leaves it as a typical IP deployment. Each router is permanently assigned an IP address on the LAN interface (Rtr1 is assigned IP A and Rtr2 is assigned IP B), and each host installs a static default route through one of the routers (in this example they all use Rtr1's IP A). Moving to the VRRP environment, each router has the exact same permanently assigned IP address. Rtr1 is said to be the IP address owner of IP A, and Rtr2 is the IP address owner of IP B. A virtual router is then defined by associating a unique identifier (the virtual router ID) with the address owned by a router. Finally, the VRRP protocol manages virtual router failover to a backup router. The example above shows a virtual router configured to cover the IP address owned by Rtr1 (VRID=1,IP_Address=A). When VRRP is enabled on Rtr1 for VRID=1 it will assert itself as Master, with priority=255, since it is the IP address owner for the virtual router IP address. When VRRP is enabled on Rtr2 for VRID=1 it will transition to Backup, with priority=100, since it is not the IP address owner. If Rtr1 should fail then the VRRP protocol will transition Rtr2 to Master, temporarily taking over forwarding responsibility for IP A to provide uninterrupted service to the hosts. Note that in this example IP B is not backed up, it is only used by Rtr2 as its interface address. In order to backup IP B, a second virtual router must be configured. This is shown in the next section.draft-ietf-vrrp-spec-v2-05.txt [Page 9]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 20004.2 Sample Configuration 2 The following figure shows a configuration with two virtual routers with the hosts spitting their traffic between them. This example is expected to be very common in actual practice. +-----------+ +-----------+ | Rtr1 | | Rtr2 | |(MR VRID=1)| |(BR VRID=1)| |(BR VRID=2)| |(MR VRID=2)| VRID=1 +-----------+ +-----------+ VRID=2 IP A ---------->* *<---------- IP B | | | | ------------------+------------+-----+--------+--------+--------+-- ^ ^ ^ ^ | | | | (IP A) (IP A) (IP B) (IP B) | | | | +--+--+ +--+--+ +--+--+ +--+--+ | H1 | | H2 | | H3 | | H4 | +-----+ +-----+ +--+--+ +--+--+ Legend: ---+---+---+-- = Ethernet, Token Ring, or FDDI H = Host computer MR = Master Router BR = Backup Router * = IP Address (IP) = default router for hosts In the example above, half of the hosts have configured a static route through Rtr1's IP A and half are using Rtr2's IP B. The configuration of virtual router VRID=1 is exactly the same as in the first example (see section 4.1), and a second virtual router has been added to cover the IP address owned by Rtr2 (VRID=2, IP_Address=B). In this case Rtr2 will assert itself as Master for VRID=2 while Rtr1 will act as a backup. This scenario demonstrates a deployment providing load splitting when both routers are available while providing full redundancy for robustness.draft-ietf-vrrp-spec-v2-05.txt [Page 10]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 20005.0 Protocol The purpose of the VRRP packet is to communicate to all VRRP routers the priority and the state of the Master router associated with the Virtual Router ID. VRRP packets are sent encapsulated in IP packets. They are sent to the IPv4 multicast address assigned to VRRP.5.1 VRRP Packet Format This section defines the format of the VRRP packet and the relevant fields in the IP header. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Type | Virtual Rtr ID| Priority | Count IP Addrs| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Auth Type | Adver Int | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . | | . | | . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address (n) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Authentication Data (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Authentication Data (2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+5.2 IP Field Descriptions5.2.1 Source Address The primary IP address of the interface the packet is being sent from.5.2.2 Destination Address The IP multicast address as assigned by the IANA for VRRP is: 224.0.0.18draft-ietf-vrrp-spec-v2-05.txt [Page 11]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 This is a link local scope multicast address. Routers MUST NOT forward a datagram with this destination address regardless of its TTL.5.2.3 TTL The TTL MUST be set to 255. A VRRP router receiving a packet with the TTL not equal to 255 MUST discard the packet.5.2.4 Protocol The IP protocol number assigned by the IANA for VRRP is 112 (decimal).5.3 VRRP Field Descriptions5.3.1 Version The version field specifies the VRRP protocol version of this packet. This document defines version 2.5.3.2 Type The type field specifies the type of this VRRP packet. The only packet type defined in this version of the protocol is: 1 ADVERTISEMENT A packet with unknown type MUST be discarded.5.3.3 Virtual Rtr ID (VRID) The Virtual Router Identifier (VRID) field identifies the virtual router this packet is reporting status for.5.3.4 Priority The priority field specifies the sending VRRP router's priority for the virtual router. Higher values equal higher priority. This field is an 8 bit unsigned integer field. The priority value for the VRRP router that owns the IP address(es) associated with the virtual router MUST be 255 (decimal). VRRP routers backing up a virtual router MUST use priority values between 1-254 (decimal). The default priority value for VRRP routers backing up a virtual router is 100 (decimal).draft-ietf-vrrp-spec-v2-05.txt [Page 12]INTERNET-DRAFT Virtual Router Redundancy Protocol January 5, 2000 The priority value zero (0) has special meaning indicating that the current Master has stopped participating in VRRP. This is used to trigger Backup routers to quickly transition to Master without having to wait for the current Master to timeout.5.3.5 Count IP Addrs The number of IP addresses contained in this VRRP advertisement.5.3.6 Authentication Type The authentication type field identifies the authentication method being utilized. Authentication type is unique on a Virtual Router basis. The authentication type field is an 8 bit unsigned integer. A packet with unknown authentication type or that does not match the locally configured authentication method MUST be discarded. The authentication methods currently defined are: 0 - No Authentication 1 - Simple Text Password 2 - IP Authentication Header5.3.6.1 No Authentication The use of this authentication type means that VRRP protocol exchanges are not authenticated. The contents of the Authentication Data field should be set to zero on transmission and ignored on reception.5.3.6.2 Simple Text Password The use of this authentication type means that VRRP protocol exchanges are authenticated by a clear text password. The contents of the Authentication Data field should be set to the locally configured password on transmission. There is no default password. The receiver MUST check that the Authentication Data in the packet matches its configured authentication string. Packets that do not match MUST be discarded. Note that there are security implications to using Simple Text password authentication, and one should see the Security Consideration section of this document.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -