Master election. However, the typical scenario assumptions are likely to cover the vast majority of deployments, loss of the Master router is infrequent, and the expected duration in Master election convergence is quite small ( << 1 second ). Thus the VRRP optimizations represent significant simplifications in the protocol design while incurring an insignificant probability of brief network degradation.Knight, et. al. Standards Track [Page 7]RFC 2338 VRRP April 19984. Sample Configurations4.1 Sample Configuration 1 The following figure shows a simple network with two VRRP routers implementing one virtual router. Note that this example is provided to help understand the protocol, but is not expected to occur in actual practice. +-----+ +-----+ | MR1 | | BR1 | | | | | | | | | VRID=1 +-----+ +-----+ IP A ---------->* *<--------- IP B | | | | | | ------------------+------------+-----+--------+--------+--------+-- ^ ^ ^ ^ | | | | (IP A) (IP A) (IP A) (IP A) | | | | +--+--+ +--+--+ +--+--+ +--+--+ | H1 | | H2 | | H3 | | H4 | +-----+ +-----+ +--+--+ +--+--+ Legend: ---+---+---+-- = Ethernet, Token Ring, or FDDI H = Host computer MR = Master Router BR = Backup Router * = IP Address (IP) = default router for hosts The above configuration shows a very simple VRRP scenario. In this configuration, the end-hosts install a default route to the IP address of virtual router #1 (IP A) and both routers run VRRP. The router on the left becomes the Master for virtual router #1 (VRID=1) and the router on the right is the Backup for virtual router #1. If the router on the left should fail, the other router will take over virtual router #1 and its IP addresses, and provide uninterrupted service for the hosts. Note that in this example, IP B is not backed up by the router on the left. IP B is only used by the router on the right as its interface address. In order to backup IP B, a second virtual router would have to be configured. This is shown in the next section.Knight, et. al. Standards Track [Page 8]RFC 2338 VRRP April 19984.2 Sample Configuration 2 The following figure shows a configuration with two virtual routers with the hosts spitting their traffic between them. This example is expected to be very common in actual practice. +-----+ +-----+ | MR1 | | MR2 | | & | | & | | BR2 | | BR1 | VRID=1 +-----+ +-----+ VRID=2 IP A ---------->* *<---------- IP B | | | | | | ------------------+------------+-----+--------+--------+--------+-- ^ ^ ^ ^ | | | | (IP A) (IP A) (IP B) (IP B) | | | | +--+--+ +--+--+ +--+--+ +--+--+ | H1 | | H2 | | H3 | | H4 | +-----+ +-----+ +--+--+ +--+--+ Legend: ---+---+---+-- = Ethernet, Token Ring, or FDDI H = Host computer MR = Master Router BR = Backup Router * = IP Address (IP) = default router for hosts In the above configuration, half of the hosts install a default route to virtual router #1's IP address (IP A), and the other half of the hosts install a default route to virtual router #2's IP address (IP B). This has the effect of load balancing the outgoing traffic, while also providing full redundancy.5.0 Protocol The purpose of the VRRP packet is to communicate to all VRRP routers the priority and the state of the Master router associated with the Virtual Router ID. VRRP packets are sent encapsulated in IP packets. They are sent to the IPv4 multicast address assigned to VRRP.Knight, et. al. Standards Track [Page 9]RFC 2338 VRRP April 19985.1 VRRP Packet Format This section defines the format of the VRRP packet and the relevant fields in the IP header. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Type | Virtual Rtr ID| Priority | Count IP Addrs| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Auth Type | Adver Int | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . | | . | | . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address (n) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Authentication Data (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Authentication Data (2) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+5.2 IP Field Descriptions5.2.1 Source Address The primary IP address of the interface the packet is being sent from.5.2.2 Destination Address The IP multicast address as assigned by the IANA for VRRP is: 224.0.0.18 This is a link local scope multicast address. Routers MUST NOT forward a datagram with this destination address regardless of its TTL.5.2.3 TTL The TTL MUST be set to 255. A VRRP router receiving a packet with the TTL not equal to 255 MUST discard the packet.Knight, et. al. Standards Track [Page 10]RFC 2338 VRRP April 19985.2.4 Protocol The IP protocol number assigned by the IANA for VRRP is 112 (decimal).5.3 VRRP Field Descriptions5.3.1 Version The version field specifies the VRRP protocol version of this packet. This document defines version 2.5.3.2 Type The type field specifies the type of this VRRP packet. The only packet type defined in this version of the protocol is: 1 ADVERTISEMENT A packet with unknown type MUST be discarded.5.3.3 Virtual Rtr ID (VRID) The Virtual Router Identifier (VRID) field identifies the virtual router this packet is reporting status for.5.3.4 Priority The priority field specifies the sending VRRP router's priority for the virtual router. Higher values equal higher priority. This field is an 8 bit unsigned integer field. The priority value for the VRRP router that owns the IP address(es) associated with the virtual router MUST be 255 (decimal). VRRP routers backing up a virtual router MUST use priority values between 1-254 (decimal). The default priority value for VRRP routers backing up a virtual router is 100 (decimal). The priority value zero (0) has special meaning indicating that the current Master has stopped participating in VRRP. This is used to trigger Backup routers to quickly transition to Master without having to wait for the current Master to timeout.5.3.5 Count IP Addrs The number of IP addresses contained in this VRRP advertisement.Knight, et. al. Standards Track [Page 11]RFC 2338 VRRP April 19985.3.6 Authentication Type The authentication type field identifies the authentication method being utilized. Authentication type is unique on a per interface basis. The authentication type field is an 8 bit unsigned integer. A packet with unknown authentication type or that does not match the locally configured authentication method MUST be discarded. The authentication methods currently defined are: 0 - No Authentication 1 - Simple Text Password 2 - IP Authentication Header5.3.6.1 No Authentication The use of this authentication type means that VRRP protocol exchanges are not authenticated. The contents of the Authentication Data field should be set to zero on transmission and ignored on reception.5.3.6.2 Simple Text Password The use of this authentication type means that VRRP protocol exchanges are authenticated by a clear text password. The contents of the Authentication Data field should be set to the locally configured password on transmission. There is no default password. The receiver MUST check that the Authentication Data in the packet matches its configured authentication string. Packets that do not match MUST be discarded. Note that there are security implications to using Simple Text password authentication, and one should see the Security Consideration section of this document.5.3.6.3 IP Authentication Header The use of this authentication type means the VRRP protocol exchanges are authenticated using the mechanisms defined by the IP Authentication Header [AUTH] using "The Use of HMAC-MD5-96 within ESP and AH" [HMAC]. Keys may be either configured manually or via a key distribution protocol. If a packet is received that does not pass the authentication check due to a missing authentication header or incorrect message digest, then the packet MUST be discarded. The contents of the Authentication Data field should be set to zero on transmission and ignored on reception.Knight, et. al. Standards Track [Page 12]RFC 2338 VRRP April 19985.3.7 Advertisement Interval (Adver Int) The Advertisement interval indicates the time interval (in seconds) between ADVERTISEMENTS. The default is 1 second. This field is used for troubleshooting misconfigured routers.5.3.8 Checksum The checksum field is used to detect data corruption in the VRRP message. The checksum is the 16-bit one's complement of the one's complement sum of the entire VRRP message starting with the version field. For computing the checksum, the checksum field is set to zero.5.3.9 IP Address(es) One or more IP addresses that are associated with the virtual router. The number of addresses included is specified in the "Count IP Addrs" field. These fields are used for troubleshooting misconfigured routers.5.3.10 Authentication Data The authentication string is currently only utilized for simple text authentication, similar to the simple text authentication found in the Open Shortest Path First routing protocol [OSPF]. It is up to 8 characters of plain text. If the configured authentication string is shorter than 8 bytes, the remaining space MUST be zero-filled. Any VRRP packet received with an authentication string that does not match the locally configured authentication string MUST be discarded. The authentication string is unique on a per interface basis. There is no default value for this field.6. Protocol State Machine6.1 Parameters6.1.1 Parameters per Interface Authentication_Type Type of authentication being used. Values are defined in section 5.3.6. Authentication_Data Authentication data specific to the Authentication_Type being used.Knight, et. al. Standards Track [Page 13]RFC 2338 VRRP April 19986.1.2 Parameters per Virtual Router VRID Virtual Router Identifier. Configured item in the range 1-255 (decimal). There is no default. Priority Priority value to be used by this VRRP router in Master election for this virtual router. The value of 255 (decimal) is reserved for the router that owns the IP addresses associated with the virtual router. The value of 0 (zero) is reserved for Master router to indicate it is releasing responsibility for the virtual router. The range 1-254 (decimal) is available for VRRP routers backing up the virtual router. The default value is 100 (decimal). IP_Addresses One or more IP addresses associated with this virtual router. Configured item. No default. Advertisement_Interval Time interval between ADVERTISEMENTS