亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? traindatasql語句.txt

?? 基于決策樹和貝葉斯的預測分析器
?? TXT
字號:
        /* 1、 ageType分6類:<=20為year0_20,21-30為year21_30,31-40為year31_40,41-50為year41_50,51-60為year51_60,>=61為yearover60
        
           2、  原有education_numType: 1-16  ,分成6級:   edu1_3,edu4_6,edu7_9,edu10_12,edu13_14,edu15_16
        
           3、 occupationType共14類:Tech_support, Craft_repair, Other_service(?), Sales, Exec_managerial, Prof_specialty,
                   Handlers_cleaners, Machine_op_inspct, Adm_clerical, Farming_fishing, Transport_moving, 
                   Priv_house_serv, Protective_serv, Armed_Forces
  
           4 、原有native-countryType:United-States, Cambodia, England, Puerto-Rico, Canada, Germany, 
          Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, 
          Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, 
          Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, 
          Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands}
               native_country分成5類developNO1,developNO2,developNO3,developNO4,developNO5后:
         developNO1:(<0.1)       Outlying-US(Guam-USVI-etc),Vietnam,Mexico,Dominican-Republic,Laos,Haiti,Hungary,
				Guatemala,Nicaragua,Scotland,El-Salvador,Trinadad&Tobago,Holand-Netherlands	
											
         developNO2:(>=0.1 <0.2)  Puerto-Rico,South,China,Cuba,Poland,Jamaica,Portugal,Ireland,Ecuador,Peru,?

         developNO3:(>=0.2 <0.3)  Honduras,France,Columbia,United-States,England,Germany,Greece,Philippines,Thailand,                                  Yugoslavia
         developNO4:(>=0.3 <0.4)  India.Japan.
         developNO5:(>=0.4 )      Cambodia,Canada,Iran,Italy,Taiwan,Hong      
        
平均:0.2375  
計算方法:
SELECT COUNT(*) 
FROM traindata1
WHERE native_country = ' ?'

SELECT COUNT(*)
FROM traindata1
WHERE native_country = ' ?' AND makeover = ' >50K'
      
具體數值:
Outlying-US(Guam-USVI-etc):0 Vietnam:0.08 Mexico:0.064 Dominican-Republic:0.083 Laos:0 Haiti:0.067 Hungary:0
Guatemala:0.048 Nicaragua:0 Scotland:0 El-Salvador:0.097 Trinadad&Tobago:0 Holand-Netherlands:0

Puerto-Rico:0.1395 South:0.1  China:0.1613 Cuba:0.1516  Poland:0.1739 Jamaica:0.1875 Portugal:0.1667
Ireland:0.125  Ecuador:0.125  Peru:0.1111  ?:0.1111


Honduras:0.2 France:0.2 Columbia:0.2 United-States:0.2418 England:0.2812 Germany:0.2653  Greece:0.2222 Philippines:0.2632 Thailand:0.25 Yugoslavia:0.25

India:0.3 Japan:0.3 
Cambodia:0.4285 Canada:0.404 Iran:0.4783  Italy:0.4545 Taiwan:0.4211 Hong:0.5
         5、sexType分為Male、Female兩類
*/




      

CREATE DATABASE adult_data
ON
( 
	NAME=adult_data,
    FILENAME='adult_data.mdf')


CREATE TABLE traindata1
(

	age      INT,
	workclass VARCHAR(30),
	fnlwgt   INT,
	education VARCHAR(20),
	education_num INT,
	marital_status VARCHAR(30),
	occupation  VARCHAR(30),
	relationship VARCHAR(30),
	race VARCHAR(20),
	sex VARCHAR(10),
	capital_gain INT,
	capital_loss INT,
	hours_per_week INT,
	native_country  VARCHAR(30),
	makeover VARCHAR (10)
)


BULK INSERT traindata1
FROM 'adult.data.txt'
WITH
(
	FIELDTERMINATOR = ',',
	ROWTERMINATOR = '\n'
)


CREATE TABLE traindata2
(

	age      INT,
	workclass VARCHAR(30),
	fnlwgt   INT,
	education VARCHAR(20),
	education_num INT,
	marital_status VARCHAR(30),
	occupation  VARCHAR(30),
	relationship VARCHAR(30),
	race VARCHAR(20),
	sex VARCHAR(10),
	capital_gain INT,
	capital_loss INT,
	hours_per_week INT,
	native_country  VARCHAR(30),
	makeover50k VARCHAR (10)
)


BULK INSERT traindata2
FROM 'adult.data.txt'
WITH
(
	FIELDTERMINATOR = ',',
	ROWTERMINATOR = '\n'
)

ALTER TABLE traindata2 DROP COLUMN workclass
ALTER TABLE traindata2 DROP COLUMN fnlwgt
ALTER TABLE traindata2 DROP COLUMN marital_status
ALTER TABLE traindata2 DROP COLUMN relationship
ALTER TABLE traindata2 DROP COLUMN race
ALTER TABLE traindata2 DROP COLUMN capital_gain
ALTER TABLE traindata2 DROP COLUMN capital_loss
ALTER TABLE traindata2 DROP COLUMN hours_per_week

//ageType分6類:<=20為year0_20,21-30為year21_30,31-40為year31_40,41-50為year41_50,51-60為year51_60,>=61為yearover60

UPDATE traindata2
SET age=0
WHERE age<=20

UPDATE traindata2
SET age=1
WHERE age>20 AND age<=30

UPDATE traindata2
SET age=2
WHERE age>30 AND age<=40

UPDATE traindata2
SET age=3
WHERE age>40 AND age<=50

UPDATE traindata2
SET age=4
WHERE age>50 AND age<=60

UPDATE traindata2
SET age=5
WHERE age>60 

ALTER TABLE traindata2 ALTER COLUMN age VARCHAR(15)

UPDATE traindata2
SET age = 'year0_20'
WHERE age = '0'

UPDATE traindata2
SET age= 'year21_30'
WHERE age = '1'

UPDATE traindata2
SET age = 'year31_40'
WHERE age = '2'

UPDATE traindata2
SET age = 'year31_40'
WHERE age = '3'

UPDATE traindata2
SET age = 'year41_50'
WHERE age = '4'

UPDATE traindata2
SET age = 'yearover60'
WHERE age = '5'

//原有education_numType: 1-16  ,分成6級:   edu1_3,edu4_6,edu7_9,edu10_12,edu13_14,edu15_16

UPDATE traindata2
SET education = 'edu1_3'
WHERE education_num >= 0 AND  education_num <= 3

UPDATE traindata2
SET education = 'edu4_6'
WHERE education_num >= 4 AND  education_num <= 6

UPDATE traindata2
SET education = 'edu7_9'
WHERE education_num >= 7 AND  education_num <= 9

UPDATE traindata2
SET education = 'edu10_12'
WHERE education_num >= 10 AND  education_num <= 12

UPDATE traindata2
SET education = 'edu13_14'
WHERE education_num >= 13 AND  education_num <= 14

UPDATE traindata2
SET education = 'edu15_16'
WHERE education_num >= 15 AND  education_num <= 16

ALTER TABLE traindata2 DROP COLUMN education_num


//occupationType共14類:Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,
//                   Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, 
//                 Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving
//                   Priv-house-serv, Protective-serv, Armed-Forces
//occupationType共14類(將原"-"改為"_"便于編程處理,并去掉前面的空格):Tech_support, Craft_repair, Other_service, Sales, //Exec_managerial, Prof_specialty, Handlers_cleaners, Machine_op_inspct, Adm_clerical, Farming_fishing, Transport_moving, 
//Priv_house_serv, Protective_serv, Armed_Forces

UPDATE traindata2
SET occupation = 'Tech_support'
WHERE occupation =' Tech-support' 

UPDATE traindata2
SET occupation = 'Craft_repair'
WHERE occupation =' Craft-repair' 

UPDATE traindata2
SET occupation = 'Other_service'
WHERE occupation =' Other-service' 

UPDATE traindata2
SET occupation = 'Exec_managerial'
WHERE occupation =' Exec-managerial' 

UPDATE traindata2
SET occupation = 'Prof_specialty'
WHERE occupation =' Prof-specialty' 

UPDATE traindata2
SET occupation = 'Handlers_cleaners'
WHERE occupation =' Handlers-cleaners' 

UPDATE traindata2
SET occupation = 'Machine_op_inspct'
WHERE occupation =' Machine-op-inspct' 

UPDATE traindata2
SET occupation = 'Adm_clerical'
WHERE occupation =' Adm-clerical' 

UPDATE traindata2
SET occupation = 'Farming_fishing'
WHERE occupation =' Farming-fishing' 
UPDATE traindata2
SET occupation = 'Transport_moving'
WHERE occupation =' Transport-moving' 

UPDATE traindata2
SET occupation = 'Priv_house_serv'
WHERE occupation =' Priv-house-serv' 

UPDATE traindata2
SET occupation = 'Protective_serv'
WHERE occupation =' Protective-serv' 

UPDATE traindata2
SET occupation = 'Armed_Forces'
WHERE occupation =' Armed-Forces' 

UPDATE traindata2
SET occupation = 'Other_service'
WHERE occupation =' ?'

/*原有native-countryType:United-States, Cambodia, England, Puerto-Rico, Canada, Germany, 
          Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, 
          Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, 
          Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, 
          Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands}
               native_country分成5類developNO1,developNO2,developNO3,developNO4,developNO5后:
         developNO1:(<0.1)       Outlying-US(Guam-USVI-etc),Vietnam,Mexico,Dominican-Republic,Laos,Haiti,Hungary,
				Guatemala,Nicaragua,Scotland,El-Salvador,Trinadad&Tobago,Holand-Netherlands	
											
         developNO2:(>=0.1 <0.2)  Puerto-Rico,South,China,Cuba,Poland,Jamaica,Portugal,Ireland,Ecuador,Peru,?

         developNO3:(>=0.2 <0.3)  Honduras,France,Columbia,United-States,England,Germany,Greece,Philippines,Thailand,                                  Yugoslavia
         developNO4:(>=0.3 <0.4)  India.Japan.
         developNO5:(>=0.4 )      Cambodia,Canada,Iran,Italy,Taiwan,Hong 

*/
UPDATE traindata2
SET native_country = 'developNO1'
WHERE native_country = ' Outlying-US(Guam-USVI-etc)' OR native_country = ' Vietnam' 
   OR native_country = ' Mexico' OR native_country = ' Dominican-Republic' 
   OR native_country = ' Laos' OR native_country = ' Haiti' 
   OR native_country = ' Hungary' OR native_country = ' Guatemala' 
   OR native_country = ' Nicaragua' OR native_country = ' Scotland' 
   OR native_country = ' El-Salvador' OR native_country = ' Trinadad&Tobago' 
   OR native_country = ' Holand-Netherlands'

UPDATE traindata2
SET native_country = 'developNO2'
WHERE native_country = ' Puerto-Rico' OR native_country = ' South' 
   OR native_country = ' China' OR native_country = ' Cuba' 
   OR native_country = ' Poland' OR native_country = ' Jamaica' 
   OR native_country = ' Portugal' OR native_country = ' Ireland' 
   OR native_country = ' Ecuador' OR native_country = ' Peru' 
   OR native_country = ' ?' 

UPDATE traindata2
SET native_country = 'developNO3'
WHERE native_country = ' Honduras' OR native_country = ' France' 
   OR native_country = ' Columbia' OR native_country = ' United-States' 
   OR native_country = ' England' OR native_country = ' Germany' 
   OR native_country = ' Greece' OR native_country = ' Philippines' 
   OR native_country = ' Thailand' OR native_country = ' Yugoslavia' 
        UPDATE traindata2
SET native_country = 'developNO4'
WHERE native_country = ' India' OR native_country = ' Japan'

UPDATE traindata2
SET native_country = 'developNO5'
WHERE native_country = ' Cambodia' OR native_country = ' Canada' 
   OR native_country = ' Iran' OR native_country = ' Italy' 
   OR native_country = ' Taiwan' OR native_country = ' Hong'                           




UPDATE traindata2
SET makeover50k = 'yes'
WHERE makeover50k = ' >50K'

UPDATE traindata2
SET makeover50k = 'no'
WHERE makeover50k = ' <=50K'



SELECT *
FROM traindata2

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品88888| 国产成人啪免费观看软件| 久久成人综合网| 色婷婷久久久久swag精品| 精品国产第一区二区三区观看体验 | 日韩欧美一区在线| 自拍偷拍亚洲激情| 国产乱子伦视频一区二区三区| 欧美三级日韩三级| 中文字幕亚洲视频| 狠狠色丁香久久婷婷综| 91精品国产欧美一区二区成人 | 五月婷婷综合网| 91香蕉视频黄| 国产精品污www在线观看| 精品一区二区三区免费观看| 欧美美女一区二区| 亚洲韩国一区二区三区| 色老汉av一区二区三区| 中文字幕中文字幕在线一区 | 一本一本大道香蕉久在线精品 | 日产国产高清一区二区三区 | 99久久er热在这里只有精品15| 亚洲一区二区3| 91在线精品一区二区三区| 亚洲国产成人在线| 丁香六月综合激情| 欧美激情一二三区| 国产成人精品亚洲午夜麻豆| 久久麻豆一区二区| 国产精品影视天天线| 国产亚洲一区字幕| 国产69精品久久777的优势| 国产三级一区二区| 成人小视频在线| 成人欧美一区二区三区视频网页| 成人av网址在线观看| 亚洲人午夜精品天堂一二香蕉| jvid福利写真一区二区三区| 亚洲乱码国产乱码精品精可以看 | 国产成人a级片| 日本一区二区高清| 成人爱爱电影网址| 亚洲色欲色欲www| 在线免费观看成人短视频| 亚洲品质自拍视频| 在线观看av不卡| 天天综合色天天| 日韩精品一区二区在线| 国产精品白丝jk白祙喷水网站 | 精品福利一区二区三区| 国内精品写真在线观看| 欧美国产精品劲爆| 在线视频欧美精品| 日韩vs国产vs欧美| 久久久久9999亚洲精品| 99re热这里只有精品视频| 一区二区三区高清| 91精品国产欧美一区二区成人| 麻豆精品精品国产自在97香蕉 | 欧美一区二区精美| 国产成人在线色| 亚洲国产日韩一级| 精品99久久久久久| 色偷偷成人一区二区三区91| 午夜精品久久久久久久蜜桃app | 国产不卡免费视频| 亚洲乱码国产乱码精品精98午夜 | 色天天综合久久久久综合片| 午夜精品福利视频网站| 久久久亚洲午夜电影| 91亚洲精品久久久蜜桃网站| 日本亚洲电影天堂| 国产精品毛片久久久久久 | 色先锋久久av资源部| 青青国产91久久久久久| 国产欧美精品一区aⅴ影院| 欧美综合一区二区三区| 国内不卡的二区三区中文字幕| 亚洲男同1069视频| 亚洲精品在线免费观看视频| 色一情一乱一乱一91av| 国产一区二区在线观看视频| 亚洲一区二区在线免费观看视频| 国产亚洲午夜高清国产拍精品| 欧美最猛黑人xxxxx猛交| 成人一级视频在线观看| 美女尤物国产一区| 亚洲午夜成aⅴ人片| 国产精品色在线观看| 精品久久久久久久久久久院品网| 日本电影欧美片| 日韩午夜三级在线| 91高清视频免费看| 99vv1com这只有精品| 国产激情精品久久久第一区二区 | 免费成人在线视频观看| 亚洲视频一区二区在线| 国产欧美日韩亚州综合| 欧美精品一区二区三| 欧美精品久久久久久久多人混战| 色综合久久88色综合天天6| 国产一区二区按摩在线观看| 免费人成在线不卡| 日韩国产精品久久久| 午夜欧美一区二区三区在线播放| 亚洲欧洲综合另类| 亚洲美女视频一区| 亚洲视频中文字幕| 亚洲色图欧美激情| 亚洲日本青草视频在线怡红院| 国产精品美女久久久久高潮| 国产女人18毛片水真多成人如厕| 久久女同性恋中文字幕| 久久综合一区二区| 久久亚洲春色中文字幕久久久| 日韩免费电影一区| 久久这里只有精品6| 久久久午夜精品| 欧美激情中文字幕| 国产精品欧美久久久久无广告| 国产清纯美女被跳蛋高潮一区二区久久w| 91精品国产色综合久久ai换脸| 678五月天丁香亚洲综合网| 欧美美女一区二区三区| 日韩欧美电影在线| 亚洲精品一区二区三区影院| 久久免费看少妇高潮| 国产午夜精品久久久久久免费视 | 性感美女极品91精品| 香蕉乱码成人久久天堂爱免费| 青青草国产成人av片免费| 激情综合色综合久久| 成人精品视频.| 91麻豆蜜桃一区二区三区| 欧美三级欧美一级| 精品国产一区二区精华| 久久久不卡影院| 亚洲色图欧美在线| 婷婷六月综合网| 国产在线日韩欧美| av亚洲产国偷v产偷v自拍| 欧美午夜精品久久久久久超碰| 69堂成人精品免费视频| 久久久91精品国产一区二区三区| 中文字幕亚洲精品在线观看| 午夜精品久久久久久久| 久久国产精品露脸对白| 成人av网址在线观看| 91精品国产91综合久久蜜臀| 久久久不卡影院| 午夜久久电影网| 成人av电影免费观看| 欧美人妇做爰xxxⅹ性高电影 | 性感美女久久精品| 精品一区二区三区视频在线观看 | 国产乱码精品一品二品| 91首页免费视频| 精品伦理精品一区| 亚洲精品伦理在线| 久久99久久99精品免视看婷婷| 在线观看三级视频欧美| 国产亚洲精品7777| 日本不卡高清视频| 日本韩国欧美在线| 国产亲近乱来精品视频| 日韩**一区毛片| 欧美性欧美巨大黑白大战| 国产亚洲综合av| 久草中文综合在线| 欧美日韩亚洲国产综合| 中文字幕日本乱码精品影院| 久久精品国产亚洲a| 欧美色视频一区| 国产精品理论片| 久久99久久久欧美国产| 欧美日韩成人在线一区| 亚洲欧美日韩在线不卡| 国产成人自拍在线| 精品国产乱码久久久久久1区2区| 亚洲国产精品一区二区久久| jlzzjlzz亚洲女人18| 久久先锋影音av| 久久不见久久见免费视频1| 欧美精品123区| 亚洲制服丝袜av| 91日韩在线专区| 欧美国产激情一区二区三区蜜月 | 91在线观看地址| 国产精品福利一区二区三区| 国产一区在线精品| 欧美成人女星排名| 蜜臂av日日欢夜夜爽一区| 欧美日韩你懂的| 日韩中文字幕亚洲一区二区va在线| 91免费观看视频| 亚洲欧美欧美一区二区三区| 成人涩涩免费视频| 日韩一区在线免费观看| 96av麻豆蜜桃一区二区|