亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? manual.10.html

?? 最經(jīng)典的分子對(duì)結(jié)軟件
?? HTML
字號(hào):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML EXPERIMENTAL 970324//EN"><HTML><HEAD><META NAME="GENERATOR" CONTENT="Adobe FrameMaker 5.5/HTML Export Filter"><LINK REL="STYLESHEET" HREF="Manual.css"><TITLE> Scoring</TITLE></HEAD><BODY BGCOLOR="#ffffff"><H2 CLASS="Heading-3"><A NAME="pgfId=5319"> </A><A NAME="30177"> </A><A NAME="marker=11805"> </A>Scoring</H2><P CLASS="Body"><A NAME="pgfId=8521"> </A>Dock uses several types of scoring functions to discriminate among orientations and molecules.  Scoring is requested using the <A HREF="Manual.19.html#35823" CLASS="XRef">score_ligand</A> parameter.  Each scoring function is treated independently during the calculation and results are written to separate output files.  In order to combine the results of two or more scoring functions, apply the additional functions in separate post-docking scoring calculations.</P><P CLASS="Body"><A NAME="pgfId=12873"> </A>Dock will score the interactions of a ligand with the receptor if the <A HREF="Manual.19.html#34124" CLASS="XRef">intermolecular_score</A> parameter is set.  If <A HREF="Manual.19.html#22201" CLASS="XRef">flexible_ligand</A> is set, then dock will score the interactions between rigid segments within a molecule if the <A HREF="Manual.19.html#27914" CLASS="XRef">intramolecular_score</A> parameter is set.  The total score is the sum of the intramolecular score and the intermolecular score, EXCEPT when different molecules are being compared for a <A HREF="Manual.19.html#25701" CLASS="XRef">rank_ligands</A> list.  After a flexible molecule has been docked, and it is being considered for the ranked ligand list, then the total score is set equal to only the intermolecular score plus whatever size penalty the user has specified with the <A HREF="Manual.19.html#56025" CLASS="XRef">contact_size_penalty</A> parameter and so on for each type of scoring.</P><P CLASS="Body"><A NAME="pgfId=10361"> </A>To enable rapid score evaluation during docking, the score potentials are precalculated on a three-dimensial grid using <A HREF="Manual.1b.html#37839" CLASS="XRef">grid</A>.  However, <A NAME="marker=11815"> </A>continuum scoring may be performed by turning off the <A HREF="Manual.19.html#41535" CLASS="XRef">gridded_score</A> flag.  Continuum scoring may be used to evaluate a ligand:receptor complex without the investment of a grid calculation, or to perform a more detailed calculation without the numerical approximation of the grid.  Continuum scoring is also triggered when an <A HREF="Manual.19.html#27914" CLASS="XRef">intramolecular_score</A> is requested, but is only used for intramolecular score terms.  When continuum scoring is requested, then score parameters normally supplied to <A HREF="Manual.1b.html#37839" CLASS="XRef">grid</A>, must also be supplied to dock.  It is left to the user to make sure consistent values are supplied to both programs.  Older grids calculated by chemgrid may also be read by specifying a value of 3.5 for the <A HREF="Manual.19.html#22380" CLASS="XRef">grid_version</A> parameter.</P><P CLASS="Body"><A NAME="pgfId=10673"> </A>The score is used to identify interesting orientations and molecules.  If a top-scoring list is requested, like <A HREF="Manual.19.html#23984" CLASS="XRef">rank_orientations</A> or <A HREF="Manual.19.html#25701" CLASS="XRef">rank_ligands</A>, then dock will maintain a sorted list of a user-defined length for output.  But if sorted lists are not requested, then dock will need to know what score cutoff to use to write out orientations or molecules.  This cutoff is supplied by the user with the <A HREF="Manual.19.html#27692" CLASS="XRef">contact_maximum</A> parameter and so on for each scoring function.  This score cutoff may be overridden for orientations near the input orientation using the <A HREF="Manual.19.html#21445" CLASS="XRef">rmsd_override</A> parameter.</P><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=10311"> </A><A NAME="marker=11816"> </A>Bump Filter</H3><P CLASS="Body"><A NAME="pgfId=10316"> </A>Orientations may be filtered prior to scoring to discard those in which the molecule significantly overlaps receptor atoms.  This feature is enabled with the <A HREF="Manual.19.html#42188" CLASS="XRef">bump_filter</A> flag, but is only available if the <A HREF="Manual.19.html#41535" CLASS="XRef">gridded_score</A> flag is also set.  At the time of construction of the bump filter, the amount of atom VDW overlap is defined with the <A HREF="Manual.1e.html#23822" CLASS="XRef">bump_overlap</A> parameter.  At the time of bump evaluation the number of allowed bumps is defined with the <A HREF="Manual.19.html#26093" CLASS="XRef">bump_maximum</A> parameter.  If <A NAME="marker=11818"> </A><A HREF="Manual.10.html#23381" CLASS="XRef">Score Optimization</A> is being performed, then a few number of bumps should be allowed, since the minimizer can recover from such clashes.  In addition, a few bumps often indicate an orientation that interacts intimately with the site and often leads to a strongly favorable orientation after minimization.</P></DIV><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=8552"> </A><A NAME="marker=11817"> </A>Contact Score</H3><P CLASS="Body"><A NAME="pgfId=10307"> </A>The contact score function is enabled with the <A HREF="Manual.19.html#36064" CLASS="XRef">contact_score</A> flag.  The contact score is a simple summation of the number of heavy atom contacts between the ligand and receptor.  At the time of construction of the contact scoring grid, the distance threshold defining a contact is set with the <A HREF="Manual.1e.html#19748" CLASS="XRef">contact_cutoff_distance</A>.  Atom VDW overlaps are penalized by checking the bump filter grid, or with the <A HREF="Manual.19.html#25056" CLASS="XRef">contact_clash_overlap</A> parameter for the intramolecular score.  The amount of penalty is specified with the <A HREF="Manual.19.html#36640" CLASS="XRef">contact_clash_penalty</A> parameter.</P><P CLASS="Body"><A NAME="pgfId=10409"> </A>The contact score provides a simple assessment of shape complementarity.  It can be useful for evaluating primarily non-polar interactions.</P></DIV><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=10254"> </A><A NAME="marker=11819"> </A>Energy Score</H3><P CLASS="Body"><A NAME="pgfId=10414"> </A>The energy score is activated with the <A HREF="Manual.19.html#23338" CLASS="XRef">energy_score</A> parameter.  It is based on the non-bonded terms of the molecular mechanic force field (please refer to <A HREF="Manual.1c.html#29459" CLASS="XRef">Equation 1 on page 74</A> for more background).  During grid construction (and continuum scoring) every term in the function may be tailored by the user.  The distance dependence of the Coulombic function is set with the <A HREF="Manual.1e.html#33818" CLASS="XRef">distance_dielectric</A> parameter.  The dielectric constant is adjusted with the <A HREF="Manual.1e.html#24740" CLASS="XRef">dielectric_factor</A> parameter.  The distance dependence of the Lennard-Jones function is set with the <A HREF="Manual.1e.html#12372" CLASS="XRef">attractive_exponent</A> and <A HREF="Manual.1e.html#24040" CLASS="XRef">repulsive_exponent</A> parameters.  Typically a 6-12 potential is used, but it can be softened up by using a 6-8 or 6-9 potential.  Regardless of the exponent values selected, the same radii and well-depths are used.  The VDW well-depths and radii are stored in an editable file (see <A HREF="Manual.46.html#25447" CLASS="XRef">vdw.defn on page 105</A>) which is identified with the <A HREF="Manual.1e.html#22067" CLASS="XRef">vdw_definition_file</A> parameter.  In addition, the model for non-polar hydrogens may be selected with the <A HREF="Manual.1e.html#33172" CLASS="XRef">atom_model</A> parameter.  With a united-atom model, the non-polar hydrogens are given zero VDW potentials and any partial charge residing on them is transferred to the adjacent carbon.  The united atom model provides a smoother intermolecular potential which requires fewer steps of minimization.  However, the all-atom model is more accurate, and perhaps captures some aromatic interaction coulombic terms otherwise missing.</P></DIV><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=8536"> </A><A NAME="18383"> </A>Chemical Score</H3><P CLASS="Body"><A NAME="pgfId=10467"> </A>Chemical scoring allows the energy scoring function to be further tailored to enhance recognition of chemical complementarity.  The attractive portion of the VDW term can often dominate the energy for uncharged molecules.  With chemical scoring this term is scaled depending on the chemical labels assigned to the interacting atoms.  It is activated by the <A HREF="Manual.19.html#15150" CLASS="XRef">chemical_score</A> parameter.  The chemical labels and definitions are the same as those for chemical matching (see <A HREF="Manual.47.html#97377" CLASS="XRef">chem.defn on page 106</A>).  The chemical interaction table resides in an editable file (see <A HREF="Manual.49.html#16204" CLASS="XRef">chem_score.tbl on page 108</A>) and is identified with the <A HREF="Manual.19.html#30595" CLASS="XRef">chemical_score_file</A> parameter.</P><P CLASS="Body"><A NAME="pgfId=10488"> </A>Chemical scoring can be used to incorporate qualitative aspects of solvation.  For instance hydrophobic-polar interactions can be made non-attractive or even repulsive.  Further, it can be used to screen for molecules that contain a particular functional group (in concert with <A HREF="Manual.e.html#85567" CLASS="XRef">Chemical Matching</A>) for presentation to a receptor active site.  The interaction table could also be derived using statistical techniques from binding and structure data to improve the modeling of a particular site or class of sites.</P><P CLASS="Body"><A NAME="pgfId=12903"> </A>Chemical scoring is used for intermolecular scoring only.  If intramolecular score is requested, then the regular energy score is computed for internal energy.</P><P CLASS="Body"><A NAME="pgfId=12902"> </A>This type of scoring should be considered experimental.  Parameterization is left to the user.  It should be used at your own risk.</P></DIV><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=8564"> </A>RMSD Score</H3><P CLASS="Body"><A NAME="pgfId=10493"> </A>The RMSD score evaluates of the difference in conformation and orientation of two identical molecules.  It is available when <A HREF="Manual.19.html#41535" CLASS="XRef">gridded_score</A> is not requested and is activated by the <A HREF="Manual.19.html#31159" CLASS="XRef">rmsd_score</A> parameter.  The reference molecule is supplied with the <A HREF="Manual.19.html#27747" CLASS="XRef">receptor_atom_file</A>, and the molecule to check is supplied with the <A HREF="Manual.19.html#35951" CLASS="XRef">ligand_atom_file</A>, which may contain multiple molecules.</P><P CLASS="Body"><A NAME="pgfId=10513"> </A>Since the RMSD is treated as a score, it may in fact be minimized.  This procedure is useful for evaluating the difference of a CONCORD conformation from crystal conformation.</P></DIV><DIV><H3 CLASS="Heading-4"><A NAME="pgfId=8542"> </A><A NAME="23381"> </A>Score Optimization</H3><P CLASS="Body"><A NAME="pgfId=10518"> </A>Score optimization allows the conformation and orientation of a molecule to be adjusted to improve the score.  Although the calculation is expensive, it makes the conformation and orientation search more efficient because less sampling becomes necessary.  Optimization is activated with the <A HREF="Manual.19.html#36933" CLASS="XRef">minimize_ligand</A> parameter.  The optimizer currently uses the simplex algorithm which does not require evaluation of derivatives.  It does however depend on a random number generator which makes it not only sensitive to the initial seed provided with <A HREF="Manual.19.html#10903" CLASS="XRef">random_seed</A> parameter, but also to the order of evaluation.  So results will vary if molecules are supplied in a different order.  The amount of variance should be small, though.  For detailed calculations, it is recommended that the optimization be repeated with different random number seeds to check convergence.</P><P CLASS="Body"><A NAME="pgfId=10550"> </A>The initial step size of the minimizer is specified with the <A HREF="Manual.19.html#28703" CLASS="XRef">initial_translation</A>, <A HREF="Manual.19.html#21978" CLASS="XRef">initial_rotation</A>, and <A HREF="Manual.19.html#42531" CLASS="XRef">initial_torsion</A> parameters.  The length of minimization may be controlled with the <A HREF="Manual.19.html#19339" CLASS="XRef">maximum_iterations</A> parameter.</P><P CLASS="Body"><A NAME="pgfId=10541"> </A>Even if several scoring functions have been requested, not all need to be minimized.  Specification of which functions are to be minimized is done with <A HREF="Manual.19.html#39678" CLASS="XRef">contact_minimize</A> and so forth for each scoring function.  The termination criteria of minimization is specified with <A HREF="Manual.19.html#17504" CLASS="XRef">contact_convergence</A> and so forth.</P><P CLASS="Body"><A NAME="pgfId=10551"> </A>Since minimization may converge prematurely, each call to the minimizer is actually composed of multiple cycles.  The number of cycles is controlled with the <A HREF="Manual.19.html#24031" CLASS="XRef">maximum_cycles</A> parameter.  Additional cycles of minimization are spawned if the previous simplex has made a significant difference in the conformation or orientation AND if the score has passed below a threshold set by the user.  The difference in configuration is measured by the vector magnitude of the final simplex vertex array.  The difference must exceed the <A HREF="Manual.19.html#18440" CLASS="XRef">cycle_convergence</A> parameter to be significant.  A value of 1.0 for this parameter would correspond to at least one of the simplex vertices moving a distance equal to the initial step size.  The score threshold prevents repeated cycles of minimization of a configuration that is really of no interest.  The score threshold is set with <A HREF="Manual.19.html#22058" CLASS="XRef">contact_termination</A> an so forth for each scoring function.</P><P CLASS="Body"><A NAME="pgfId=10587"> </A>The performance of the minimizer can be monitored using the <A HREF="Manual.17.html#27477" CLASS="XRef">-p</A> flag (see <A HREF="Manual.17.html#20437" CLASS="XRef">Command-line Arguments on page 53</A> and <A HREF="Manual.1a.html#38444" CLASS="XRef">Performance on page 73</A>).</P><DIV><H6 CLASS="New-Page"><A NAME="pgfId=11421"> </A>&nbsp;</H6></DIV></DIV><CENTER><P>

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产亚洲成av人在线观看导航| 琪琪一区二区三区| 99在线精品免费| 亚洲女性喷水在线观看一区| 一本到高清视频免费精品| 亚洲精选视频在线| 欧美精品自拍偷拍动漫精品| 日本vs亚洲vs韩国一区三区二区| 久久一夜天堂av一区二区三区| 国产91精品欧美| 一区二区三区四区不卡视频| 日韩一区二区在线看| 蜜臀久久久久久久| 国产精品午夜久久| 欧美揉bbbbb揉bbbbb| 不卡一区在线观看| 国产一区二区三区四区五区美女 | 日本道免费精品一区二区三区| 色婷婷综合视频在线观看| 亚洲国产高清aⅴ视频| 欧美videos大乳护士334| 日韩精品电影在线观看| 欧美一级一区二区| 日本少妇一区二区| 日韩美女视频在线| 蜜臀av一区二区在线免费观看 | 亚洲乱码精品一二三四区日韩在线| 91成人看片片| 国产一区二区在线免费观看| 亚洲激情五月婷婷| 亚洲欧洲在线观看av| 日韩精品一区二区三区swag| 色香色香欲天天天影视综合网| 琪琪一区二区三区| 亚洲精品菠萝久久久久久久| 精品国精品国产尤物美女| av电影天堂一区二区在线观看| 日本在线不卡一区| 一区二区高清免费观看影视大全| 国产欧美日韩一区二区三区在线观看| 在线日韩av片| 成人av网在线| 国产在线一区观看| 蜜臀a∨国产成人精品| 亚洲在线视频网站| 国产精品电影一区二区| 久久免费视频色| 久久婷婷综合激情| 日韩欧美视频一区| 欧美麻豆精品久久久久久| 欧美电影影音先锋| 99久精品国产| 在线免费观看视频一区| 蜜桃视频在线观看一区| 国产日本亚洲高清| 国产视频一区在线观看| 2023国产精品| 午夜av一区二区三区| 欧美亚洲日本国产| 在线欧美日韩精品| 蜜臀av亚洲一区中文字幕| 久久久亚洲精品一区二区三区| 91小宝寻花一区二区三区| 日韩精品久久久久久| 日本一区二区不卡视频| 在线成人免费视频| 成人综合在线观看| 欧美一级理论片| 欧美一二三四区在线| 精品久久久久久综合日本欧美| 久久久亚洲精品石原莉奈| 国产精品国产自产拍在线| 亚洲色图丝袜美腿| 日韩电影在线观看电影| 久久精品国产亚洲a| 国产精品香蕉一区二区三区| 成人av综合在线| 在线一区二区三区做爰视频网站| 欧美色中文字幕| 亚洲精品在线三区| 一区二区三区在线看| 午夜精品视频一区| 韩国三级中文字幕hd久久精品| av高清不卡在线| 欧美日韩1区2区| 中文字幕制服丝袜成人av| 亚洲欧美视频在线观看视频| 日本一不卡视频| 久久99国产精品免费网站| 91麻豆视频网站| 欧美一区二区成人| 中文字幕在线不卡视频| 国产一区二区三区综合| 欧美日韩亚洲国产综合| 洋洋av久久久久久久一区| 无码av免费一区二区三区试看 | 日韩福利电影在线| 精品国产凹凸成av人网站| 美女网站在线免费欧美精品| 亚洲视频在线一区| 久久久久久久综合日本| 91精品国产麻豆| 欧美亚日韩国产aⅴ精品中极品| 懂色av一区二区三区蜜臀 | 日韩电影网1区2区| 亚洲自拍偷拍综合| 中文字幕亚洲精品在线观看| 久久久久久久综合狠狠综合| 日韩精品一区二区三区在线观看 | 国产喂奶挤奶一区二区三区| 日韩免费电影网站| 欧美精品色综合| 在线亚洲人成电影网站色www| 波多野结衣中文字幕一区 | 成人午夜免费av| 国产乱妇无码大片在线观看| 蜜桃av一区二区三区| 日韩精品91亚洲二区在线观看| 亚洲综合清纯丝袜自拍| 亚洲免费电影在线| 亚洲欧美日韩在线不卡| 亚洲私人黄色宅男| 亚洲欧美中日韩| 国产精品乱码久久久久久| 国产日韩欧美麻豆| 国产午夜精品久久久久久久| 久久午夜电影网| 久久久www免费人成精品| 久久综合久久综合亚洲| 久久久国产午夜精品| 国产亚洲人成网站| 国产欧美日韩不卡免费| 久久精品夜色噜噜亚洲a∨| 久久综合成人精品亚洲另类欧美| 精品日韩欧美一区二区| xf在线a精品一区二区视频网站| 日韩欧美在线不卡| 精品国产乱码久久久久久老虎| 日韩精品一区二区三区中文不卡| 精品美女一区二区| 国产日韩欧美制服另类| 中文字幕第一区第二区| 国产精品青草久久| 亚洲人成网站精品片在线观看| 一区二区三区在线免费视频| 亚洲国产精品欧美一二99| 日产精品久久久久久久性色| 免费不卡在线观看| 国产在线视视频有精品| 国产成人亚洲综合a∨婷婷图片| 成人免费看片app下载| av中文字幕亚洲| 欧美制服丝袜第一页| 91精品国产乱| 久久久亚洲精品一区二区三区 | 麻豆精品一区二区三区| 国产一区二区免费看| 成人黄色a**站在线观看| 日本福利一区二区| 5月丁香婷婷综合| 久久婷婷国产综合国色天香| 国产精品视频一二| 一区二区三区四区在线| 日韩国产欧美三级| 国产在线播精品第三| fc2成人免费人成在线观看播放| 欧洲国产伦久久久久久久| 91精品国产综合久久久久久漫画 | 久久久久久9999| 亚洲三级视频在线观看| 日韩有码一区二区三区| 国产精品一区二区久久不卡| 一本久久精品一区二区| 欧美一级黄色大片| 国产欧美1区2区3区| 亚洲一区二区三区视频在线 | 欧美一三区三区四区免费在线看| 精品国产百合女同互慰| 亚洲欧美视频在线观看视频| 日本美女一区二区三区视频| 国产激情一区二区三区| 91免费在线播放| 欧美一级高清片在线观看| 国产精品美女久久久久久2018 | 免费成人av在线| 99国产精品久久久久久久久久| 欧美高清视频一二三区 | 国产精品国产三级国产普通话蜜臀 | 国产在线视视频有精品| 日本精品一区二区三区高清 | 欧美电影一区二区三区| 国产午夜精品在线观看| 国产精品夜夜嗨| 欧美麻豆精品久久久久久| 亚洲va韩国va欧美va精品| 国产精品一区不卡| 欧美日韩亚州综合| 国产亚洲一本大道中文在线| 美女尤物国产一区| 欧美一区二区三区白人|