?? zip.cpp
字號:
while (heap_len < 2)
{int i = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
desc->dyn_tree[i].Freq = 1;
depth[i] = 0;
opt_len--;
if (desc->static_tree) static_len -= desc->static_tree[i].Len;
/* i is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = heap_len/2; n >= 1; n--) pqdownheap( zipdate,desc->dyn_tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(desc->dyn_tree, n); /* n = node of least frequency */
m = heap[SMALLEST]; /* m = node of next least frequency */
heap[--heap_max] = n; /* keep the nodes sorted by frequency */
heap[--heap_max] = m;
/* Create a new node father of n and m */
desc->dyn_tree[node].Freq = desc->dyn_tree[n].Freq + desc->dyn_tree[m].Freq;
depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
desc->dyn_tree[n].Dad = desc->dyn_tree[m].Dad = (ush)node;
#ifdef DUMP_BL_TREE
if (desc->dyn_tree == bl_tree) {
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
node, desc->dyn_tree[node].Freq, n, desc->dyn_tree[n].Freq, m, desc->dyn_tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
heap[SMALLEST] = node++;
pqdownheap( zipdate,desc->dyn_tree, SMALLEST);
} while (heap_len >= 2);
heap[--heap_max] = heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen( zipdate,(tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes( zipdate,(ct_data *)desc->dyn_tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
void scan_tree(ZipDate* zipdate,ct_data *tree, /* the tree to be scanned */
int max_code) /* and its largest code of non zero frequency */
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code+1].Len = (ush)0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
if (curlen != prevlen) bl_tree[curlen].Freq++;
bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
bl_tree[REPZ_3_10].Freq++;
} else {
bl_tree[REPZ_11_138].Freq++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
void send_tree (ZipDate* zipdate,ct_data *tree, /* the tree to be scanned */
int max_code) /* and its largest code of non zero frequency */
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do { send_code(curlen, bl_tree); } while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(curlen, bl_tree); count--;
}
send_code(REP_3_6, bl_tree); send_bits( zipdate,count-3, 2);
} else if (count <= 10) {
send_code(REPZ_3_10, bl_tree); send_bits( zipdate,count-3, 3);
} else {
send_code(REPZ_11_138, bl_tree); send_bits( zipdate,count-11, 7);
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
int build_bl_tree(ZipDate* zipdate)
{
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree( zipdate,(ct_data *)dyn_ltree, l_desc.max_code);
scan_tree( zipdate,(ct_data *)dyn_dtree, d_desc.max_code);
/* Build the bit length tree: */
build_tree( zipdate,(tree_desc *)(&bl_desc));
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (bl_tree[bl_order[max_blindex]].Len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
opt_len += 3*(max_blindex+1) + 5+5+4;
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
void send_all_trees(ZipDate* zipdate,int lcodes, int dcodes, int blcodes)
/* number of codes for each tree */
{
int rank; /* index in bl_order */
Tracev((stderr, "\nbl counts: "));
send_bits( zipdate,lcodes-257, 5); /* not +255 as stated in appnote.txt */
send_bits( zipdate,dcodes-1, 5);
send_bits( zipdate,blcodes-4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits( zipdate,bl_tree[bl_order[rank]].Len, 3);
}
send_tree( zipdate,(ct_data *)dyn_ltree, lcodes-1); /* send the literal tree */
send_tree( zipdate,(ct_data *)dyn_dtree, dcodes-1); /* send the distance tree */
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length for the file so far.
*/
ulg flush_block(ZipDate* zipdate,char * buf, /* input block, or NULL if too old */
ulg stored_len, /* length of input block */
int eof) /* true if this is the last block for a file */
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
if (file_type == (ush)UNKNOWN) set_file_type( zipdate);
/* Construct the literal and distance trees */
build_tree( zipdate,(tree_desc *)(&l_desc));
build_tree( zipdate,(tree_desc *)(&d_desc));
max_blindex = build_bl_tree( zipdate);
opt_lenb = (opt_len+3+7)>>3;
static_lenb = (static_len+3+7)>>3;
input_len += stored_len; /* for debugging only */
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
if (stored_len+4 <= opt_lenb && buf != (char*)0)
{ send_bits( zipdate,(STORED_BLOCK<<1)+eof, 3); /* send block type */
compressed_len = (compressed_len + 3 + 7) & ~7L;
compressed_len += (stored_len + 4) << 3;
copy_block( zipdate,buf, (unsigned)stored_len, 1); /* with header */
} else if (static_lenb == opt_lenb)
{ send_bits( zipdate,(STATIC_TREES<<1)+eof, 3);
compress_block( zipdate,(ct_data *)static_ltree, (ct_data near *)static_dtree);
compressed_len += 3 + static_len;
} else
{ send_bits( zipdate,(DYN_TREES<<1)+eof, 3);
send_all_trees( zipdate,l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
compress_block( zipdate,(ct_data *)dyn_ltree, (ct_data near *)dyn_dtree);
compressed_len += 3 + opt_len;
}
init_block( zipdate);
if (eof) {
bi_windup( zipdate);
compressed_len += 7; /* align on byte boundary */
}
return compressed_len >> 3;
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ct_tally (ZipDate* zipdate,int dist, /* distance of matched string */
int lc) /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
l_buf[last_lit++] = (uch)lc;
if (dist == 0) {
/* lc is the unmatched char */
dyn_ltree[lc].Freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
dyn_dtree[d_code(dist)].Freq++;
d_buf[last_dist++] = (ush)dist;
flags |= flag_bit;
}
flag_bit <<= 1;
/* Output the flags if they fill a byte: */
if ((last_lit & 7) == 0) {
flag_buf[last_flags++] = flags;
flags = 0, flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if (level > 2 && (last_lit & 0xfff) == 0)
{ /* Compute an upper bound for the compressed length */
ulg out_length = (ulg)last_lit*8L;
ulg in_length = (ulg)strstart-block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
}
out_length >>= 3;
Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
last_lit, last_dist, in_length, out_length,
100L - out_length*100L/in_length));
if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
}
return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
void compress_block(ZipDate* zipdate, ct_data *ltree, /* literal tree */
ct_data *dtree) /* distance tree */
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
uch flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (last_lit != 0) do {
if ((lx & 7) == 0) flag = flag_buf[fx++];
lc = l_buf[lx++];
if ((flag & 1) == 0) {
send_code(lc, ltree); /* send a literal byte */
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = length_code[lc];
send_code(code+LITERALS+1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= base_length[code];
send_bits( zipdate,lc, extra); /* send the extra length bits */
}
dist = d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
send_code(code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= base_dist[code];
send_bits( zipdate,dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < last_lit);
send_code(END_BLOCK, ltree);
lx=lx;
}
//====================================================
void set_file_type(ZipDate* zipdate)
{
int n = 0;
unsigned ascii_freq = 0;
unsigned bin_freq = 0;
while (n < 7) bin_freq += dyn_ltree[n++].Freq;
while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
}
//===============================================
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -