?? regrgha.m
字號(hào):
function [theta,lambda] = RegrGHA(X,N,epochs,gamma)
% [theta,lambda] = RegrGHA(X,N,epochs,gamma)
% [theta,lambda] = RegrGHA(X,N)
%
% Principal Component Analysis using Generalized Hebbian Algorithm
%
% Input parameters:
% - X: Input data block (k x n)
% - N: Number of latent variables to be extracted
% - epochs: Number of iterations (default epochs=100)
% - gamma: Step size (default gamma=0.001)
% Return parameters:
% - theta: Eigenvectors
% - lambda: Sequence of eigenvalue vectors
%
% Heikki Hyotyniemi Dec.20, 2000
[k,n] = size(X);
if nargin < 4
gamma = 0.001;
end
if nargin < 3
epochs = 100;
end
[THETA,LAMBDA] = RegrPCA(X,n);
theta = rand(n,N);
theta = theta./(ones(n,1)*sqrt(sum(theta.*theta)));
lambda = NaN*ones(N,epochs);
for i = 1:epochs
X = X(randperm(k),:);
z = zeros(N,1);
sumz = zeros(N,1);
for j = 1:k
x = X(j,:)';
delta = zeros(size(theta));
z(1) = theta(:,1)'*x;
delta(:,1) = gamma*z(1)*(x-z(1)*theta(:,1));
for l = 2:N
z(l) = theta(:,l)'*x;
temp = 0;
for m = 1:l
temp = temp + theta(:,m)*z(m);
end
delta(:,l) = gamma*z(l)*(x-temp);
end
theta = theta + delta;
sumz = sumz + z.*z;
end
lambda(:,i) = sumz/k;
clf
hold on
plot([1:i]',ones(i,1)*LAMBDA');
plot([1:i]',lambda(:,1:i)');
plot([1:i]',lambda(:,1:i)','*');
title(['Behavior of the eigenvalues - epoch ',num2str(i)]);
drawnow
end
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -