?? regrmlrc.m
字號:
function [F,error,R2] = RegrMLRC(X,Y,G,g,theta)
% [F,error,R2] = RegrMLRC(X,Y,G,g,theta)
% [F,error,R2] = RegrMLRC(X,Y,G,g)
%
% Regression from X to Y with constraint G*F = g.
% Each column in F has the same constraints, different g.
%
% Input parameters:
% - X: Input data block (k x n)
% - Yi: Output data block (k x m)
% - G,g: Linear constraints in the form GF = g
% - theta: Latent basis, orthogonal or not (optional)
% Return parameters:
% - error: Prediction errors
% - R2: Data fitting criterion R^2
%
% Heikki Hyotyniemi Dec.21, 2002
F = NaN; error = NaN; R2 = NaN;
[kx,n] = size(X);
[ky,m] = size(Y);
if kx ~= ky, disp('Incompatible X and Y'); break;
else k = kx; end
if size(G,1) ~= size(g,1), disp('Incompatible G and g'); break; end
if size(G,2) ~= n, disp('Incompatible G and X'); break; end
if size(g,2) ~= m, disp('Incompatible g and Y'); break; end
if nargin<5
invXX = inv(X'*X);
F = invXX*(X'-G'*inv(G*invXX*G')*G*invXX*X')*Y ...
+ invXX*G'*inv(G*invXX*G')*g;
else
F1 = theta*inv(theta'*theta);
Z = X*F1;
invZZ = inv(Z'*Z);
F2 = invZZ*(Z'-F1'*G'*inv(G*F1*invZZ*F1'*G')*G*F1*invZZ*Z')*Y ...
+ invZZ*F1'*G'*inv(G*F1*invZZ*F1'*G')*g;
F = F1*F2;
end
Yhat = X*F;
error = Yhat - Y;
R2 = 1 - sum((error).^2)./sum(Y.^2);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -