亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? layer.h

?? 此代碼經過大量使用
?? H
字號:
/***************************************************************************                          layer.h  -  description                             -------------------    begin                : Wed Apr 11 2001    copyright            : (C) 2001 by Matt Grover    email                : mgrover@amygdala.org ***************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#ifndef LAYER_H#define LAYER_Husing namespace std;#include <vector>#include <string>#include <amygdala/neuron.h>#include <amygdala/network.h>#include <amygdala/types.h>class Network;class Neuron;/** @class Layer layer.h amygdala/layer.h  * @brief Layer groups a number of Neurons for convenience. Layer is not needed to  * operate the network.  *  * The only limitation currently is that unlayered Networks  * cannot be loaded or saved. This limitation should be addressed in 0.3.  * @see Neuron, Network, NetLoader  *@author Matt Grover  */class Layer {public:    Layer();    ~Layer();    friend class Network;    /** Add a pre instantiated Neuron to the Layer. This doesn't affect the      * ownership of the Neuron until the Layer is added to a Network. At that      * point, the Network will assume ownership of the pointer. Neurons that      * are added to layers do not need to be added to a Network separately.      * @param nrn Pointer to a Neuron object that will be added to the Layer.      * @see Network::AddLayer() */    void AddNeuron(Neuron* nrn);    /** Add pre instantiated Neuron objects to the Layer. This doesn't affect the      * ownership of the Neuron until the Layer is added to a Network. At that      * point, the Network will assume ownership of the pointer. Neurons that      * are added to layers do not need to be added to a Network separately.      * @param nrnVec Vector of pointers to Neuron objects that will be      * added to the Layer.      * @see Network::AddLayer() */    void AddNeuronVector(vector<Neuron*> nrnVec);	    /** Set the name of the Layer.  This is optional,     * but it can be useful after reloading a Network from     * a file.     * @param name Name of the Layer. */	void LayerName(string name) { layerName = name; }		/** Retrieve the name of the Layer,	 * @returns Layer name. */	string LayerName() { return layerName; }		/** Set the unique numeric ID for the Layer.	 * @param id Numeric id. */	void SetLayerId(unsigned int id) { layerId = id; }		/** Get the numeric ID of the Layer.	 * @returns Numeric ID. */	unsigned int LayerId() { return layerId; }		/** Designate what kind of layer this is	 * @parap ltype layer type. */	void SetLayerType(LayerType ltype) { layerType = ltype; }		/** Get the layer type	 * @returns layer type */	LayerType GetLayerType() { return layerType; }		/** Set the percentage of neurons that should be inhibitory	 * in the layer.  This value can be overridden if it is	 * also set in ConnectLayers if Neuron::EnforceSign() has not	 * been called.	 * @param percent Percentage of neurons that are inhibitory (0 - 100.0)	 * @see Neuron::EnforceSign() */	void SetPercentInhibitory( float percent );		/** Connect this layer to to another layer.	 * @param output Layer that will receive input from this	 * layer.	 * @param parms Uniform connection parameters.  Layers	 * connected with this parameter type will have weights	 * set from a uniform random distribution.	 * @param pctInhibitory If Neuron::EnforceSign() has not been set	 * prior to connecting the layers, then this can be used to set the number of	 * connections to output that will have a negative weight.	 * pctInhibitory will be ignored if sign enforcement has been	 * turned on and must be in the range 0 -> 100.0.     * @see Node::ConnectLayers() */	bool ConnectLayers(Layer* output, UniConnectType parms, float pctInhibitory = 0.0);		/** Connect this layer to to another layer.	 * @param output Layer that will receive input from this	 * layer.	 * @param parms Gaussian connection parameters.  Layers	 * connected with this parameter type will have weights	 * set from a random Gaussian distribution.	 * @param pctInhibitory If Neuron::EnforceSign() has not been set	 * prior to connecting the layers, then this can be used to set the number of	 * connections to output that will have a negative weight.	 * pctInhibitory will be ignored if sign enforcement has been	 * turned on and must be in the range 0 -> 100.0.     * @see Node::ConnectLayers() */	bool ConnectLayers(Layer* output, GaussConnectType parms, float pctInhibitory = 0.0);		/** Set constants that should be common to all neurons	 * in a layer, such  as time constants and learning constants.	 * This is optional and layers can be constructed without requiring	 * that all member Neurons have the constants.	 * @param lconst Layer constant structure.	 * @see GetLayerConstants() */	bool SetLayerConstants(LayerConstants lconst);	    /** Retrieve the set of constants that are common to     * all Neurons in a layer if they have been previously set.     * @returns LayerConstants struct.     * @see SetLayerConstants() */    LayerConstants GetLayerConstants();	    /** Set the default spike transmission delay.     * @param delay The value of the delay in microseconds (us). */    void SetSynapticDelay(AmTimeInt delay) { synapticDelay = delay; }    /** Get the default spike transmission delay.     * @returns The value of the delay in microseconds (us). */    AmTimeInt GetSynapticDelay() const { return synapticDelay; }	/*	 * Types and members refering to vector	 */		/** @returns The size of the layer. */    unsigned int size() { return nrnLayer.size(); }    typedef vector<Neuron*>::iterator iterator;    typedef vector<Neuron*>::const_iterator const_iterator;    typedef vector<Neuron*>::reverse_iterator reverse_iterator;    typedef vector<Neuron*>::const_reverse_iterator const_reverse_iterator;    /** @returns An iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    iterator begin() { return nrnLayer.begin(); }    /** @returns An iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    iterator end() { return nrnLayer.end(); }    /** @returns An iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    const_iterator begin() const { return nrnLayer.begin(); }    /** @returns An iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    const_iterator end() const { return nrnLayer.end(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    reverse_iterator rbegin() { return nrnLayer.rbegin(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    reverse_iterator rend() { return nrnLayer.rend(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    const_reverse_iterator rbegin() const { return nrnLayer.rbegin(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    const_reverse_iterator rend() const { return nrnLayer.rend(); }    /** @returns A pointer to a member Neuron.  The index is not related     * to the NeuronID. */    Neuron* operator[](unsigned int& index) { return nrnLayer[index]; }	protected:    void SetLayerParent(Network* parent);	inline bool ConnectionInhibitory(float& pctInhibitory);	    vector<Neuron*> nrnLayer;    Network* parentNet;    string layerName;    LayerType layerType;    unsigned int layerId;    // Defaults for member neurons    float learningConst;    float memTimeConst;    float synTimeConst;    float restPtnl;    float thresholdPtnl;    bool constantsSet;    float percentInhib;    AmTimeInt synapticDelay;};#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩精品欧美日韩精品一 | 在线观看日韩一区| 久久精品理论片| 日韩精品一区第一页| 亚洲一卡二卡三卡四卡| 亚洲欧美一区二区三区极速播放| 2023国产精品自拍| 精品日本一线二线三线不卡| 欧美一区二区三区视频免费播放 | av电影在线观看不卡| 国产成人精品免费视频网站| 国产综合成人久久大片91| 美女视频一区二区三区| 免费人成黄页网站在线一区二区| 亚洲成人黄色小说| 亚洲国产sm捆绑调教视频| 一区二区三区电影在线播| 一区二区三区日韩精品视频| 亚洲欧美一区二区三区国产精品| 伊人开心综合网| 亚洲综合一区二区| 天天色天天操综合| 久久激情五月激情| 国产成人aaa| 91视频www| 91精品欧美福利在线观看| 欧美tk—视频vk| 国产偷国产偷亚洲高清人白洁| 欧美激情综合五月色丁香| 最近中文字幕一区二区三区| 日本一区二区三区四区在线视频 | 亚洲精品一区二区三区香蕉| 国产亚洲短视频| 国产精品国产三级国产普通话99 | 日本道精品一区二区三区| 欧美日韩激情一区二区三区| 日韩一区二区三区av| 久久久99久久精品欧美| 亚洲欧美日韩国产另类专区| 首页国产丝袜综合| 国产精品一区二区三区四区| 色综合天天综合色综合av| 欧美肥胖老妇做爰| 国产精品色噜噜| 日韩精品电影在线观看| 成人高清av在线| 91 com成人网| 国产精品免费人成网站| 日本午夜精品一区二区三区电影| 国产精品一级在线| 欧美吞精做爰啪啪高潮| 国产偷v国产偷v亚洲高清| 舔着乳尖日韩一区| 99久久久久免费精品国产| 日韩视频永久免费| 亚洲少妇最新在线视频| 欧美二区三区91| 亚洲线精品一区二区三区| 日韩一区二区电影网| 久久综合色婷婷| 亚洲不卡av一区二区三区| 色综合久久久久综合| 欧美日韩国产综合一区二区三区 | 国产成人综合在线| 国产精品福利一区二区三区| 欧洲视频一区二区| 日韩电影在线观看一区| 久久精品视频在线看| av高清久久久| 日韩在线观看一区二区| 久久久久亚洲综合| 99久久伊人精品| 三级一区在线视频先锋| 久久亚洲私人国产精品va媚药| 成人丝袜高跟foot| 亚洲一二三区在线观看| 欧美精品一区二区三区很污很色的| 国产美女娇喘av呻吟久久| 中文字幕一区二区三区色视频| 欧美视频在线不卡| 国产一区二区在线电影| 亚欧色一区w666天堂| 国产欧美精品一区二区色综合朱莉 | 成人精品一区二区三区中文字幕| 亚洲精品自拍动漫在线| 欧美电影免费观看高清完整版| 国产91丝袜在线播放| 午夜影视日本亚洲欧洲精品| 久久久国产精品不卡| 欧美日韩视频一区二区| 成人午夜av在线| 日本亚洲电影天堂| 亚洲精品国产第一综合99久久| 久久综合色之久久综合| 欧美精品国产精品| www.激情成人| 韩国三级中文字幕hd久久精品| 亚洲一区中文在线| 亚洲国产精品t66y| 日韩欧美视频一区| 欧美日韩欧美一区二区| 大尺度一区二区| 久久精品国产精品亚洲精品| 夜夜夜精品看看| 亚洲欧美综合色| 国产欧美日韩综合精品一区二区| 欧美一级高清大全免费观看| 欧美色网一区二区| 91网上在线视频| 成人一级黄色片| 国产麻豆精品一区二区| 久久国产精品99久久人人澡| 天天色综合成人网| 亚洲国产成人tv| 亚洲国产精品一区二区久久恐怖片| 国产精品美女久久久久久2018| 精品少妇一区二区三区在线播放| 在线播放91灌醉迷j高跟美女 | 91国模大尺度私拍在线视频| bt欧美亚洲午夜电影天堂| 成人听书哪个软件好| 大胆亚洲人体视频| 成人av资源在线观看| 成人a级免费电影| 99热精品一区二区| 99久久精品免费精品国产| 99久久婷婷国产综合精品电影| 成人午夜激情在线| 成人av电影免费观看| av一区二区三区四区| 欧美亚洲国产一区二区三区va | 国产伦精一区二区三区| 国产真实乱偷精品视频免| 精品影视av免费| 国产精品中文字幕日韩精品| 国产高清不卡二三区| 国产激情一区二区三区四区| 不卡一二三区首页| 91在线观看下载| 欧美色图激情小说| 欧美一级免费大片| 欧美精品一区二区精品网| 亚洲国产精华液网站w| 日韩一区欧美一区| 亚洲成人av中文| 狂野欧美性猛交blacked| 国产成人午夜精品影院观看视频 | 不卡一二三区首页| 日本国产一区二区| 91精品国产免费| 国产亚洲欧美日韩日本| 亚洲视频一二三区| 日韩电影免费在线| 国产精品亚洲一区二区三区妖精| 不卡视频在线看| 欧美精品777| 国产视频一区二区三区在线观看| 亚洲四区在线观看| 日韩电影免费在线看| 成人美女视频在线看| 欧美日韩一区二区在线观看视频 | 精品欧美一区二区久久| 国产精品久久久久三级| 偷窥国产亚洲免费视频| 国产精品 日产精品 欧美精品| 欧美一区二区三区的| 国产亚洲精品福利| 亚洲国产日日夜夜| 国产超碰在线一区| 欧美精品自拍偷拍动漫精品| 亚洲国产精品黑人久久久| 亚洲成人tv网| 成人av免费在线播放| 日韩欧美在线影院| 亚洲视频一区在线观看| 韩国视频一区二区| 欧美日韩一二三区| 国产精品福利一区二区三区| 久久er精品视频| 欧美性生活影院| 亚洲国产激情av| 免费在线看成人av| 欧美三电影在线| 国产精品久久久久婷婷二区次| 另类人妖一区二区av| 在线亚洲一区观看| 国产精品久久久久aaaa樱花| 开心九九激情九九欧美日韩精美视频电影 | 日韩无一区二区| 亚洲一区二区三区四区中文字幕| 福利一区在线观看| 欧美大片日本大片免费观看| 亚洲国产成人va在线观看天堂| av欧美精品.com| 国产视频一区二区在线观看| 毛片av中文字幕一区二区| 9191久久久久久久久久久| 一区二区三区波多野结衣在线观看| 不卡影院免费观看| 久久久久国产精品厨房|